. | . |
Study Sheds New Insights Into Global Warming Trends by Staff Writers Pasadena CA (JPL) Nov 25, 2016
A new multi-institutional study of the temporary slowdown in the global average surface temperature warming trend observed between 1998 and 2013 concludes the phenomenon represented a redistribution of energy within the Earth system, with Earth's ocean absorbing the extra heat. The phenomenon was referred to by some as the "global warming hiatus." Global average surface temperature, measured by satellites and direct observations, is considered a key indicator of climate change. In a paper published in Earth's Future, a journal of the American Geophysical Union, lead author Xiao-Hai Yan of the University of Delaware, Newark, along with scientists from NASA's Jet Propulsion Laboratory, Pasadena, California, and several other institutions, discuss new understanding of the phenomenon. The paper grew out of a special U.S. Climate Variability and Predictability Program (CLIVAR) panel session at the 2015 American Geophysical Union fall meeting. "The hiatus period gives scientists an opportunity to understand uncertainties in how climate systems are measured, as well as to fill in the gap in what scientists know," said Yan. "NASA's examination of ocean observations has provided its own unique contribution to our knowledge of decadal climate trends and global warming," said study co-author Veronica Nieves of JPL and the University of California, Los Angeles. "Scientists have more confidence now that Earth's ocean has continued to warm continuously through time. But the rate of global surface warming can fluctuate due to natural variations in the climate system over periods of a decade or so."
Where's the missing heat? + From 1998 to 2013, the rate of global mean surface warming slowed, which some call the "global warming hiatus." + Natural variability plays a large role in the rate of global mean surface warming on decadal time scales. + Improved understanding of how the ocean distributes and redistributes heat will help the scientific community better monitor Earth's energy budget. Earth's energy budget is a complex calculation of how much energy enters our climate system from the sun and what happens to it: how much is stored by the land, ocean or atmosphere. "To better monitor Earth's energy budget and its consequences, the ocean is most important to consider because the amount of heat it can store is extremely large when compared to the land or atmospheric capacity," said Yan. According to the paper, "arguably, ocean heat content - from the surface to the seafloor - might be a more appropriate measure of how much our planet is warming."
Charting future research "This terminology more accurately describes the slowdown in global mean surface temperature rise in the late 20th century," Yan said. The scientists also called for continued support of current and future technologies for ocean monitoring to reduce observation errors in sea surface temperature and ocean heat content. This includes maintaining Argo, the main system for monitoring ocean heat content, and the development of Deep Argo to monitor the lower half of the ocean; the use of ship-based subsurface ocean temperature monitoring programs; advancements in robotic technologies such as autonomous underwater vehicles to monitor waters adjacent to land (like islands or coastal regions); and further development of real- or near-real-time deep ocean remote sensing methods. Yan's research group reported in a 2015 paper that some coastal oceans (e.g., U.S. East Coast, China Coast) responded faster to the recent global surface warming rate change than the global ocean. "Although these regions represent only a fraction of the ocean volume, the changing rate of ocean heat content is faster here, and real-time data and more research are needed to quantify and understand what is happening," Yan said. Variability and heat sequestration over specific regions (e.g., Pacific, Atlantic, Indian, Southern Oceans, etc.) require further investigation, the authors conclude. However, there is broad agreement among the scientists and in the literature that the slowdown in the global mean surface temperature increase from 1998 to 2013 was due to increased uptake of heat energy by the global ocean. This research was funded by NASA, the National Science Foundation and NOAA. Other participating institutions include the NOAA, Silver Spring, Maryland; the National Center for Atmospheric Research (NCAR), Boulder, Colorado; Scripps Institution of Oceanography, La Jolla, California; and the University of Washington, Seattle. The full paper is available here.
Related Links Earth at NASA Climate Science News - Modeling, Mitigation Adaptation
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |