. Earth Science News .
Study Uncovers Bacteria's Worst Enemy


Los Alamos NM (SPX) Apr 18, 2005
University of California scientists working at Los Alamos National Laboratory have found that the successful use of bacteria to remediate environmental contamination from nuclear waste and processing activities may depend more upon how resistant the bacteria are to chemicals than to how tolerant they are to radioactivity.

The results of a recent Laboratory study may help make bacterial bioremediation a more widespread method for cleaning up sites contaminated with actinides and other radionuclides.

In research published in the journal Environmental Microbiology, Laboratory chemist Mary Neu and her colleagues describe their study of different naturally occurring bacteria used to treat actinide contamination.

Actinides are the elements above atomic number 89 and are usually radioactive.

The study's results indicate that actinide toxicity is primarily chemical, rather than radiological, and so a bacteria's resistance to radiation does not necessarily ensure a tolerance for radionuclides.

In fact, the bacteria's worst enemy in a nuclear waste site may not be the radioactive elements, but rather, the other toxic metals that might also be found at the site.

The study also shows that contrary to the conventional wisdom, when it comes to these environmental bacteria, plutonium is less toxic than uranium and, in general, actinides are less toxic than other types of metals.

This suggests that actinide toxicity will not impede bioremediation using naturally occurring bacteria.

"This study" said Neu, "is exciting because even though we've known for years that bacterial bioremediation can be a preferred method for cleaning up actinide contamination, we've never really known whether or not radioactivity or chemical toxicity will stifle the process.

"Our study found that actinides are chemically toxic to bacteria only at high levels far, far above concentrations at contaminated sites, and that common toxic metals, such as cadmium, nickel, and chromium, are more likely to cause problems for the bacteria."

Generally, bacteria used for bioremediation are selected to target a specific form and oxidation state of toxic pollutants, such as soluble hexavalent uranium carbonate for uranium contamination.

However, a single chemical rarely contaminates soils and groundwater and combinations of actinides, radionuclides, organic chemicals and metal regularly exist at many nuclear sites.

Based on the results of this study, if bioremediation is to be effective at these types of sites, the operative microorganisms must be able to grow, function and do better than other bacteria in the presence of all kinds of contaminants.

The study examined the effects of toxicity of actinides, metals and chelators on different bacteria being evaluated for radionuclide bioremediation, Deinococcus radiodurans and Pseudomonas putida, along with the toxicity of plutonium on the bacteria Shewanella putrefaciens.

In addition to Neu, the bacteria bioremediation study team includes Christy Ruggiero and Hakim Boukhalfa of the Chemistry Division, and Joseph Lack and Larry Hersman from the Laboratory's Bioscience Division.

Related Links
Los Alamos National Laboratory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

India Signs Nuke Safety Treaty
New Delhi (UPI) Apr 08, 2005
India has ratified the Convention on Nuclear Safety, becoming legally obligated to maintain safety of nuclear plants.







  • Charter Activation Brings Space Dimension To European Emergency Exercise
  • Insects, Viruses Could Hold Key For Better Human Teamwork In Disasters
  • Japan Signs Satellite Disaster Charter
  • Emergency: Maths To The Rescue

  • Climate: The Sea Level-Climate Connection
  • At Least Part Of Climate Change Is Man-Made
  • Oil Industry Could Save Billions By Forecasting Seabed Changes
  • Climate: The Oceanic CO2 Puzzle

  • Drilling Vessel Recovers Rocks From Earth's Crust Far Below Seafloor
  • Remote Sensing Helps New Caledonia Monitor Sediment Erosion
  • Canadians Studying Space Weather Through Super Computer
  • St Petersburg And Lake Ladoga

  • Scientists Discover Better Way To Generate Power From Thermal Sources
  • GM Delivers First Fuel Cell Truck To US Army
  • China, US Sign Deal For Cooperation In Clean Technologies
  • Experimental Acrobatics Leads To First Synthesis Of Ultracold Molecules



  • Microbes In Colorful Yellowstone Hot Springs Fueled By Hydrogen
  • SAfrican Government Consults Scientists On Elephant Culling
  • NASA Analyzes Prehistoric Predator From The Past
  • Scientists Discover Unique Microbe In California's Largest Lake





  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement