. | . |
Study finds vast diversity among viruses that infect bacteria by Staff Writers St. Louis, MO (SPX) Mar 29, 2016
Viruses that infect bacteria are among the most abundant life forms on Earth. Indeed, our oceans, soils and potentially even our bodies would be overrun with bacteria were it not for bacteria-eating viruses, called bacteriophages, that keep the microbial balance of ecological niches in check. Now, a new study at Washington University School of Medicine in St. Louis suggests that bacteriophages made of RNA - a close chemical cousin of DNA - likely play a much larger role in shaping the bacterial makeup of worldwide habitats than previously recognized. The research, published in PLOS Biology, has identified 122 new types of RNA bacteriophages in diverse ecological niches, providing an opportunity for scientists to define their contributions to ecology and potentially to exploit them as novel tools to fight bacterial infections, particularly those that are resistant to antibiotics. "Lots of DNA bacteriophages have been identified, but there's an incredible lack of understanding about RNA bacteriophages," explained senior author David Wang, PhD, associate professor of molecular microbiology. "They have been largely ignored - relatively few were known to exist, and for the most part, scientists haven't bothered to look for them. This study puts RNA bacteriophages on the map and opens many new avenues of exploration." Wang estimates that of the more than 1,500 bacteriophages that have been identified, 99 percent of them have DNA genomes. The advent of large-scale genome sequencing has helped scientists identify DNA bacteriophages in the human gut, skin and blood as well as in the environment, but few researchers have looked for RNA bacteriophages in those samples (doing so requires that RNA be isolated from the samples and then converted back to DNA before sequencing). As part of the new study, first author and graduate student Siddharth Krishnamurthy, and the team, including Dan Barouch, MD, PhD, of Beth Israel Deaconess Medical Center and Harvard Medical School, identified RNA bacteriophages by analyzing data from samples taken from the environment, such as oceans, sewage and soils, and from aquatic invertebrates including crabs, sponges and barnacles, as well as insects, mice and rhesus macaques. RNA bacteriophages have been shown to infect gram-negative bacteria, which have become increasingly resistant to antibiotics and are the source of many infections in health-care settings. But the researchers also showed for the first time that these bacteriophages also may infect gram-positive bacteria, which are responsible for strep and staph infections as well as MRSA (methicillin-resistant Staphylococcus aureus). "What we know about RNA bacteriophages in any environment is limited," Wang said. "But you can think of bacteriophages and bacteria as having a predator-prey relationship. We need to understand the dynamics of that relationship. Eventually, we'd like to manipulate that dynamic to use phages to selectively kill particular bacteria. Krishnamurthy SR, Janowski AB, Zhao G, Barouch D and Wang D. Hyperexpansion of RNA bacteriophage diversity. PLOS Biology. March 24, 2016.
Related Links Washington University School of Medicine Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |