Subscribe free to our newsletters via your
. Earth Science News .




WOOD PILE
Study reveals potent carbon-storage potential of manmade wetlands
by Staff Writers
Washington DC (SPX) Jun 26, 2013


This shows co-authors Blanca Bernal and Bill Mitsch taking soil cores in the Okavango Swamp in Botswana, Africa. Credit: Bill Mitsch.

After being drained by the millions of acres to make way for agriculture, wetlands are staging a small comeback these days on farms. Some farmers restore or construct wetlands alongside their fields to trap nitrogen and phosphorus runoff, and research shows these systems can also retain pesticides, antibiotics, and other agricultural pollutants.

Important as these storage functions of wetlands are, however, another critical one is being overlooked, says Bill Mitsch, director of the Everglades Wetland Research Park at Florida Gulf Coast University and an emeritus professor at Ohio State University: Wetlands also excel at pulling carbon dioxide out of the air and holding it long-term in soil.

Writing in the July-August issue of the Journal of Environmental Quality, Mitsch and co-author Blanca Bernal report that two 15-year-old constructed marshes in Ohio accumulated soil carbon at an average annual rate of 2150 pounds per acre-or just over one ton of carbon per acre per year.

The rate was 70% faster than a natural, "control" wetland in the area and 26% faster than the two were adding soil carbon five years ago. And by year 15, each wetland had a soil carbon pool of more than 30,000 pounds per acre, an amount equaling or exceeding the carbon stored by forests and farmlands.

What this suggests, Mitsch says, is that researchers and land managers shouldn't ignore restored and man-made wetlands as they look for places to store, or "sequester," carbon long-term. For more than a decade, for example, scientists have been studying the potential of no-tillage, planting of pastures, and other farm practices to store carbon in agricultural lands, which cover roughly one-third of the Earth's land area.

Yet, when created wetlands are discussed in agricultural circles, it's almost always in the context of water quality. "So, what I'm saying is: let's add carbon to the list," Mitsch says. "If you happen to build a wetland to remove nitrogen, for example, then once you have it, it's probably accumulating carbon, too."

In fact, wetlands in agricultural landscapes may sequester carbon very quickly, because high-nutrient conditions promote the growth of cattail, reeds, and other wetland "big boys" that produce a lot of plant biomass and carbon, Mitsch says.

Once carbon ends up in wetland soil, it can also remain there for hundreds to thousands of years because of water-logged conditions that inhibit microbial decomposition.

"And carbon is a big deal-any carbon sinks that we find we should be protecting," Mitsch says. "Then we're going even further by saying: We've lost half of our wetlands in the United States, so let's not only protect the wetlands we have remaining but also build some more."

At the same time, he acknowledges that wetlands emit the powerful greenhouse gas (GHG), methane, leading some to argue that wetlands shouldn't be created as a means to sequester carbon and mitigate climate change.

But in a new analysis that modeled carbon fluxes over 100 years from the two constructed Ohio marshes and 19 other wetlands worldwide, Mitsch, Bernal, and others demonstrated that most wetlands are net carbon sinks, even when methane emissions are factored in. And among the best sinks were the wetlands in Ohio, possibly due to flow-through conditions that promoted rapid carbon storage while minimizing methane losses, the authors hypothesize.

The concerns about methane emissions and even his own promising findings point to something else, Mitsch cautions: It's easy to undervalue wetlands if we become too focused on just one of their aspects-such as whether they're net sinks or sources of GHGs. Instead, people should remember everything wetlands do.

"We know they're great for critters and for habitat, that's always been true. Then we found out they cleaned up water, and could protect against floods and storms," he says.

"And now we're seeing that they're very important for retaining carbon. So they're multidimensional systems-even though we as people tend to look at things one at a time."

Access the article abstract here.

.


Related Links
American Society of Agronomy
Forestry News - Global and Local News, Science and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WOOD PILE
The contribution of particulate matter to forest decline
Bonn, Germany (SPX) Jun 24, 2013
Bonn University scientists demonstrate that hygroscopic air pollutants decrease tree drought tolerance. Air pollution is related to forest decline and also appears to attack the protecting wax on tree leaves and needles. Bonn University scientists have now discovered a responsible mechanism: particulate matter salt compounds that become deliquescent because of humidity and form a wick-like ... read more


WOOD PILE
India chopper crash kills 20 as flood rescue forges on

India rescue chopper crash death toll rises to 20

WIN-T Increment 1 Enables National Guard to Restore Vital Network Communications Following a Disaster

Australia costs from natural disasters to soar: study

WOOD PILE
Laser guided codes advance single pixel terahertz imaging

New laser shows what substances are made of; could be new eyes for military

Google making videogame console and smart watch: report

Ames Laboratory scientists solve riddle of strangely behaving magnetic material

WOOD PILE
Sea level along Maryland's shorelines could rise 2 feet by 2050

Migrating animals add new depth to how the ocean "breathes"

El Nino, La Nina unlikely to make an appearance in 2013: WMO

Gulf of Mexico could see record 'dead zone': US

WOOD PILE
Is Arctic Permafrost the "Sleeping Giant" of Climate Change?

The rhythm of the Arctic summer

Global cooling as significant as global warming

Warm ocean drives most Antarctic ice shelf loss

WOOD PILE
Comparing genomes of wild and domestic tomato

Dutch government introduces nitrogen-reduction bill for nature areas

Rotation-resistant rootworms owe their success to gut microbes

Pesticides tainting traditional China herbs: Greenpeace

WOOD PILE
New Jersey may have been hit by a tsunami in mid-June

Calgary woman's drowning brings flood toll to four

Mexico storm upgraded to hurricane: forecasters

India flood rescue ops intensify, up to 1,000 feared dead

WOOD PILE
Mali coup leader says sorry: military source

New Sudan armed forces chief after rebel attacks

Uganda president's son denies plan to succeed father

Africa juggles East and West, as Obama comes to visit

WOOD PILE
China to fund search for origins of early humans

The evolution of throwing

Australia, Indonesia to face off over people smuggling

Outside View: Cosby's inciteful insights on Muslims




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement