. Earth Science News .
WATER WORLD
Study uses seismic noise to track water levels in underground aquifers
by Staff Writers
Boston MA (SPX) Aug 30, 2018

illustration only

Seismic noise - the low-level vibrations caused by everything from subway trains to waves crashing on the beach - is most often something seismologists work to avoid. They factor it out of models and create algorithms aimed at eliminating it so they can identify the signals of earthquakes.

But Tim Clements thinks it might be tool to monitor one of the most precious resources in the world - water.

A graduate student working in the lab of Assistant Professor of Earth and Planetary Sciences Marine Denolle, Clements is the lead author of a recent study that used seismic noise to measure the size and the water levels in underground aquifers in California.

The technique could even be used to track whether and how aquifers rebound following precipitation, and understand geological changes that might occur as water is pumped out. The study is described in a recently-published paper in Geophysical Research Letters.

"The way this would commonly be done today would be to take a measurement at a groundwater well," Clements said. "And if you have a network of those wells, you can develop a model where you assume a number of hydrological parameters...and that allows you to measure the health of the aquifer.

"But what we showed is we can just directly measure these waves that are travelling through the entire aquifer," he continued. "So we don't have to make those assumptions, because we can directly measure the waves."

Using those measurements, researchers were able to measure the water depth of the San Gabriel Valley aquifer, located just outside Los Angeles, to within a centimeter. Efforts to measure the size of the aquifer were limited by the existing seismic network, Clements said, and so were accurate only to about a kilometer.

"That gives us a way to begin thinking about volume," Denolle said. "What we found is that using this method the volume we calculated as having been pumped out of the aquifer equaled the volume that was published."

"We estimated it at about half a cubic kilometer," Clements said. "And that's exactly what the San Gabriel water master said they pumped out during the drought to meet demand."

That drought, Clements said, was one reason researchers chose to focus on the San Gabriel Valley.

"They had experienced a massive drought over the last five years, and there are over 1 million people who live in this relatively small area outside Los Angeles who depend on the groundwater for all their water-use needs," he said.

"Over the past five years, they had lost a large amount of ground water, and there's a large financial cost to that, so our goal was to understand if we can use seismic waves to understand what's happening with the aquifer."

The region is also already equipped with a network of seismographs, he said, making it relatively easy to obtain seismic noise data and use it to examine the aquifer.

While the study wasn't the first to hit upon the idea of using seismic noise to study groundwater, Denolle said earlier efforts were hampered because they relied on a signal that was relatively weak in comparison to environmental factors like temperature and pressure.

"This was a large signal we looked at," she said. "The aquifer oscillated with 20 meters of water-height changes in a couple years, so it's a bigger signal than any environmental influence."

The system could also be a useful tool for anyone involved in water resource management, Clements said, because it can give them a moment-to-moment view of precisely what is happening in an underground aquifer.

"This could be used for water management," Clements said. "In this study, we looked at about 17 years of data, from 2000 to 2017, but going forward this could be used in a water management application, so you could get a picture of what's happening with the aquifer on a daily basis."

Aside from providing groundwater measurements, the technique can also be used to monitor the health of an aquifer over time.

"If we had the data, we may be able to use this technology to look back at what aquifers looked like the past and study the long-term evolution of an aquifer," Denolle said.

"One of the challenges for people who manage water resources is whether aquifers still respond elastically, meaning can we recharge it with the same storagage capacity or is it losing capacity over time as we pump water out? Using seismic waves, we can potentially find out whether these aquifers are elastic or not."

Going forward, Clements said, he plans to pursue ways to improve the resolution of the system at both the micro and macro levels.

Working in collaboration with faculty at Tufts University, he installed wells and seismometers on campus to track changes as groundwater is pumped to the surface to irrigate sports fields. Other efforts are focused on using the existing seismometer network in California to improve ways to measure the overall size of aquifers.

Research paper


Related Links
Harvard University
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Portable freshwater harvester could draw up to 10 gallons per hour from the air
Washington DC (SPX) Aug 29, 2018
For thousands of years, people in the Middle East and South America have extracted water from the air to help sustain their populations. Drawing inspiration from those examples, researchers are now developing a lightweight, battery-powered freshwater harvester that could someday take as much as 10 gallons per hour from the air, even in arid locations. They say their nanofiber-based method could help address modern water shortages due to climate change, industrial pollution, droughts and groundwater depl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
'Dialogue of the deaf' pits Italy against EU on migrants

Facebook move on Myanmar raises thorny political questions

Controversial Fukushima nuclear statue to be removed

Flood-stricken Kerala angry after UAE $100m offer rejected

WATER WORLD
Specially prepared paper can bend, fold or flatten on command

Crack formation captured in 3D in real time

Researchers turn tracking codes into 'clouds' to authenticate genuine 3-D printed parts

The world's cleanest water droplet

WATER WORLD
Myanmar dam overflow floods 100 villages

Southern California coast emerges as a toxic algae hot spot

Cook Islands does not want China debt write-off

Portable freshwater harvester could draw up to 10 gallons per hour from the air

WATER WORLD
Ecosystems are getting greener in the Arctic

NASA gets up close with Greenland's melting ice

Greening continues across Arctic ecosystems

Unexpected Future Boost of Methane Possible from Arctic Permafrost

WATER WORLD
French tomato grower takes on Monsanto over weedkiller

Plant biodiversity essential to bee health

Bees get hooked on harmful pesticide: study

Environmentally friendly farming practices used by a third of global farms

WATER WORLD
Flooding kills 36 in Niger: UN

Pacific islands unscathed after tsunami scare

Hurricane Maria killed 2,975 in Puerto Rico: new official toll

Two dead, 255 injured in Iran earthquake

WATER WORLD
Two police killed in restive anglophone Cameroon

Archaeologists uncover ancient monumental cemetery in Kenya

Moscow signs military cooperation pact with C. Africa

Keita re-elected Mali president with landslide

WATER WORLD
Stone tools reveal modern human-like gripping capabilities 500000 years ago

DNA analysis of 6,500-year-old human remains in Israel points to origin of ancient culture

Oil palm: few areas in Africa reconcile high yields and primate protection

War may have become the dominion of men by chance









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.