|
. | . |
|
by Staff Writers Copenhagen, Denmark (SPX) Sep 25, 2014
Achieving complete breakdown of plant biomass for energy conversion in industrialized bioreactors remains a complex challenge, but new research shows that termite fungus farmers solved this problem more than 30 million years ago. The new insight reveals that the great success of termite farmers as plant decomposers is due to division of labor between a fungus breaking down complex plant components and gut bacteria contributing enzymes for final digestion.
Sophisticated management in termite fungus farms Researchers at the Centre for Social Evolution, Department of Biology, University of Copenhagen and Beijing Genomics Institute (BGI, China) discovered this by analyzing plant decomposition genes in the first genome sequencing of a fungus-farming termite and its fungal crop, and bacterial gut communities. Termites manage their fungus farm in a highly structured way. Older termite workers collect plant material and bring it to the nest. Younger workers eat the plant material together with Termitomyces fungal spores, and this plant-spore mix is defecated as a new layer of fungus garden. Within the garden, Termitomyces rapidly grows on the plant substrate until it is utilized, after which older termites consume the fungus garden. By then, nearly all organic matter has been broken down. "While we have so far focused on the fungus that feeds the termites, it is now clear that termite gut bacteria play a major role in giving the symbiosis its high efficiency", says Associate Professor Michael Poulsen, who spearheaded the work. "But it took a massive effort of sequencing the genome of the termite itself, its fungus, and several gut metagenomics to analyze the enzymes involved in plant decomposition", adds Assistant Professor Guojie Zhang, who made the genome sequencing happen at BGI Shenzhen.
A symbiotic community optimized for efficient plant decomposition The first gut passage, thus, mainly serves to inoculate the plant substrate with fungal spores, while gut bacteria play a prominent digestive role during second gut passage. Termite colonies are founded by a single queen and king that disperse by air, but lose their wings when locking themselves up for life in an underground royal chamber. As the colony grows, the queen swells up to gigantic proportions and becomes an egg-laying machine. The royal pair may survive for decades and maintain a very large colony of short-lived workers and soldiers, who take care of all colony duties. The metagenomic analyses of the queen gut showed that it contained a highly simplified bacterial community lacking plant decomposition enzymes. This suggests that the royal pair is exempt from decomposition duties and receives a high-quality fungal diet from their workers.
Related Links University of Copenhagen Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |