|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Munich, Germany (SPX) Jan 29, 2015
Water-filled micropores in hot rock may have acted as the nurseries in which life on Earth began. A team at Ludwig-Maximilians-Universitaet (LMU) in Munich has now shown that temperature gradients in pore systems promote the cyclical replication and emergence of nucleic acids. How and in what habitats did the first life-forms arise on the young Earth? One crucial precondition for the origin of life is that comparatively simple biomolecules must have had opportunities to form more complex structures, which were capable of reproducing themselves and could store genetic information in a chemically stable form. But this scenario requires some means of accumulating the precursor molecules in highly concentrated form in solution. In the early oceans, such compounds would have been present in vanishingly low concentrations. But LMU physicists led by Professor Dieter Braun now describe a setting which provides the necessary conditions. They show experimentally that pore systems on the seafloor that were heated by volcanic activity could have served as reaction chambers for the synthesis of RNA molecules, which serve as carriers of hereditary information in the biosphere today. "The key requirement is that the heat source be localized on one side of the elongated pore, so that the water on that side is significantly warmer than that on the other", says Braun. Preformed biomolecules that are washed into the pore can then be trapped, and concentrated, by the action of the temperature gradient- thus fulfilling a major prerequisite for the formation and replication of more complex molecular structures. The molecular trapping effect is a consequence of thermophoresis: Charged molecules in a temperature gradient preferentially move from the warmer to the cooler region, allowing longer polymers in particular to be securely trapped. This is an important factor in the evolution of nucleic acids such as RNA and DNA, simply because longer molecules can store more genetic information.
Recreating rock pores in the laboratory "Pores that were exposed to heat are frequently found in igneous rock formations, and they were certainly common in rocks of volcanic origin on the early Earth. So this scenario is quite realistic. And the temperature effect is enhanced by the presence of metal inclusions within the rock, which conduct heat at rates 100 times higher than water."
Temperature gradients and replication The single strands can then be transported by convection - cyclical flow along the pore perpendicular to the orientation of temperature gradient - back to the colder region of the pore. Here they encounter the chemical precursors from which each DNA strand is built, which are fed into the pore by a continuous inflow. The preformed strands then act as templates for the polymerization of complementary strands. This cycle makes it possible not only to replicate the strands but also to elongate them by stitching fragments together. When the nucleic acids accumulate to levels beyond the storage capacity of the pore, newly replicated molecules can escape and colonize neighboring pore systems. Thus, the LMU group has succeeded in constructing a system which permits autonomous and continuous Darwinian evolution of ever more complex biomolecules - thus defining realistic conditions under which life could in principle have evolved. "Life is fundamentally a thermodynamic non-equilibrium phenomenon. That is why the emergence of the first life-forms requires a local imbalance driven by an external energy source - for example, by a temperature difference imposed from outside the system," Dieter Braun explains. "That this can be achieved in such a simple and elegant way was surprising even to us. The success of the project is a tribute to the close cooperation between all members of the team."
Related Links Ludwig-Maximilians-Universitat Munchen Darwin Today At TerraDaily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |