. | . |
These nine measures reveal how forests are controlled by climate by Staff Writers Santa Fe NM (SPX) Jan 01, 2019
Instead of blood pressure, temperature, and heart rate, the vital signs for a forest are captured in key traits such as the amount of nitrogen in a tree's leaves, the leaf area, or the density of the wood. These "functional traits" can impact how trees grow - and therefore how forests respond to climate change. While researchers have begun trying to tease out these patterns in recent decades, incomplete data has made it difficult to understand what's happening to particular traits in any meaningful way - especially when you get down to the level of individual trees in a forest. To help fill this important knowledge gap, Daniel J. Wieczynski and Santa Fe Institute external professor Van M. Savage, both ecologists at the University of California-Los Angeles, and their collaborators decided to analyze existing data from trait studies on forest communities to see what could be revealed about these shifts on a global scale. "One of the challenges is that you need a lot of data to accurately measure functional diversity," says Wieczynski. "So our idea was to take what functional data we have available from databases and pair this with locally collected field data, as well as data about species abundance, to say something about climate-biodiversity relationships that we couldn't say before." The team, which also included Santa Fe Institute external professor Brian Enquist of the University of Arizona, amassed data from 421 tree communities around the world, including information from 55,983 individual trees from 2,701 species, and examined a range of "functional traits" that influence individual growth, such as plant height, wood density, leaf area, and the amount of carbon, nitrogen and phosphorus in a leaf. To determine the climatic conditions these tree communities are living in, they also analyzed the temperature, precipitation, wind speed and vapor pressure in each one. The study - one of the first to examine how climate is influencing functional traits in forest communities on a global scale - found evidence of major changes in these traits, which could affect forest productivity and composition and even how forests are distributed around the globe. And they found that climate affects nine different traits in various ways: For example, they discovered that leaf area is most influenced by vapor pressure and temperature, while height is primarily affected by temperature variability. To the authors' surprise, two climatic factors in particular had an outsized effect on trait diversity overall: temperature variability - not just mean temperature - and vapor pressure. They also found evidence that forests are currently shifting their traits in response to global warming. Wieczynski and Savage hope the work could help improve the accuracy of computer models that try to predict how forests will respond to climate change in the future. " By calculating a more accurate relationship between functional diversity and climate, using the methods we used, we'll be able to more accurately predict those changes in the future using these models," Wieczynski says. "And hopefully this will show it's important to measure more trait data in communities, or more individual level information in communities than just species-level information." "I think these results will be useful to determine climate change's effects on ecological systems," Savage says. This is just the start in gaining a better grasp of how climate change is affecting functional traits in forest communities, Wieczynski adds. "The next step is to go out to do new field studies where you actually measure trait values for more individuals."
Trees' enemies help tropical forests maintain their biodiversity Corvallis OR (SPX) Dec 28, 2018 Scientists have long struggled to explain how tropical forests can maintain their staggering diversity of trees without having a handful of species take over - or having many other species die out. The answer, researchers say, lies in the soil found near individual trees, where natural "enemies" of tree species reside. These enemies, including fungi and arthropods, attack and kill many of the seeds and seedlings near the host tree, preventing local recruitment of trees of that same species. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |