. | . |
Tiny shells indicate big changes to global carbon cycle by Staff Writers Davis CA (SPX) May 31, 2017
Experiments with tiny, shelled organisms in the ocean suggest big changes to the global carbon cycle are underway, according to a study from the University of California, Davis. For the study, published in the journal Scientific Reports, scientists raised foraminifera - single-celled organisms about the size of a grain of sand - at the UC Davis Bodega Marine Laboratory under future, high CO2 conditions. These tiny organisms, commonly called "forams," are ubiquitous in marine environments and play a key role in food webs and the ocean carbon cycle. After exposing them to a range of acidity levels, UC Davis scientists found that under high CO2, or more acidic, conditions, the foraminifera had trouble building their shells and making spines, an important feature of their shells. They also showed signs of physiological stress, reducing their metabolism and slowing their respiration to undetectable levels. This is the first study of its kind to show the combined impact of shell building, spine repair, and physiological stress in foraminifera under high CO2 conditions. The study suggests that stressed and impaired foraminifera could indicate a larger scale disruption of carbon cycling in the ocean.
Off Balance Normally, healthy foraminifera calcify their shells and sink to the ocean floor after they die, taking the calcite with them. This moves alkalinity, which helps neutralize acidity, to the seafloor. When foraminifera calcify less, their ability to neutralize acidity also lessens, making the deep ocean more acidic. But what happens in the deep ocean doesn't stay in the deep ocean.
Impacts For Thousands Of Years "That acidified water from the deep will rise again. If we do something that acidifies the deep ocean, that affects atmospheric and ocean carbon dioxide concentrations on time scales of thousands of years." Davis said the geologic record shows that such imbalances have occurred in the world's oceans before, but only during times of major change. "This points to one of the longer time-scale effects of anthropogenic climate change that we don't understand yet," Davis said.
Upwelling Brings 'future' To Surface UC Davis' Bodega Marine Laboratory in Northern California is near one of the world's most intense coastal upwelling areas. At times, it experiences conditions most of the ocean isn't expected to experience for decades or hundreds of years. "Seasonal upwelling means that we have an opportunity to study organisms in high CO2, acidic waters today - a window into how the ocean may look more often in the future," said co-author Tessa Hill, an associate professor in earth and planetary sciences at UC Davis. "We might have expected that a species of foraminifera well-adapted to Northern California wouldn't respond negatively to high CO2 conditions, but that expectation was wrong. This study provides insight into how an important marine calcifier may respond to future conditions, and send ripple effects through food webs and carbon cycling." The study's other co-authors include Emily Rivest from UC Davis and Virginia Institute of Marine Science, UC Davis professors Brian Gaylord and Eric Sanford, and UC Davis associate research scientist Ann Russell.
United Nations, United States (AFP) May 30, 2017 UN Secretary-General Antonio Guterres on Tuesday urged the world to raise its ambition in implementing the Paris climate agreement as the United States weighed pulling out of the landmark emissions-cutting deal. Making his first address on climate since taking the UN helm five months ago, Guterres said it was "absolutely essential" that the world implements the 2015 agreement "with increased ... read more Related Links University of California - Davis Climate Science News - Modeling, Mitigation Adaptation
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |