. | . |
Urban warming slows tree growth, photosynthesis by Staff Writers Raleigh NC (SPX) Oct 07, 2016
New research from North Carolina State University finds that urban warming reduces growth and photosynthesis in city trees. The researchers found that insect pests are part of the problem, but that heat itself plays a more significant role. "Earlier studies have shown that urban warming increases pest abundance in street trees," says Emily Meineke, lead author of a paper describing the work. "We wanted to know how urban warming and pest abundance affect tree growth, since trees pull carbon out of the atmosphere and convert it into biomass. This is important, because we know that high levels of atmospheric carbon play a role in climate change." Meineke did the work while a Ph.D. student at NC State. She is now a postdoctoral researcher at Harvard. To explore this issue, researchers went to 20 pairs of willow oak trees (Quercus phellos) across Raleigh, North Carolina. At each site, one tree was treated with an oil that kills insect pests, and the second tree was left untreated. The sites were located across a variety of different urban temperatures, and air temperature was monitored at each site over the course of the experiment. The researchers tracked the growth of all 40 trees for two years. Growth was assessed in two ways: by measuring the circumference of each tree's trunk, and by measuring how much specific branches grew on each tree. The researchers also measured each tree's photosynthesis, which is how trees capture carbon from the atmosphere and is a key marker of tree health. The researchers found that scale insects and spider mites - well known tree pests - were more abundant at hotter sites. Specifically, they found that spider mite populations more than doubled when a site's average temperature crossed a threshold of 16.4 degrees Celsius (61.5 degrees Fahrenheit). Scale insects, however, showed a linear relationship with temperature. In other words, the hotter it got, the more scale insects there were. The researchers also found that warming negatively affected tree photosynthesis and growth, regardless of whether pests were present. "Trees that didn't have pests had more branch growth than trees with pests," Meineke says. "But trees at warmer sites had less trunk growth, which accounts for more tree biomass, regardless of pests." The researchers then plugged these results into a model to determine the extent to which urban warming impacted carbon storage for all of the willow oaks in Raleigh. "We found that urban warming reduced carbon storage by all of Raleigh's willow oaks by 12 percent, or 27 metric tons per year," Meineke says. "We think the findings are generalizable to other tree species and other cities, especially hotter cities like Atlanta, but additional work needs to be done to determine whether that's the case," Meineke says. The paper, "Urban warming reduces aboveground carbon storage," is published in the journal Proceedings of the Royal Society B. The paper was co-authored by Elsa Youngsteadt, an entomology research associate at NC State; Rob Dunn, a professor of applied ecology at NC State; and Steve Frank, an associate professor of entomology and plant pathology at NC State.
Related Links North Carolina State University Forestry News - Global and Local News, Science and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |