. | . |
What role does electromagnetic signaling have in biological systems by Staff Writers Washington DC (SPX) Feb 08, 2017
For decades scientists have wondered whether electromagnetic waves might play a role in intra- and inter-cell signaling. Researchers have suggested since the 1960s, for example, that terahertz frequencies emanate from cell membranes, but they've lacked the technology and tools to conduct reproducible experiments that could prove whether electromagnetic waves constitute purposeful signals for biological function-or if they're merely background noise. With recent advances in technology and modeling, experiments may now be possible to test signaling hypotheses. DARPA's RadioBio program, announced this week, seeks to establish if purposeful electromagnetic wave signaling between biological cells exists-and if evidence supports that it does, to determine what information is being transferred. The validity of existing and new electromagnetic biosignaling claims requires an understanding of how the structure and function of microscopic, natural antennas are capable of generating and receiving information in a noisy spectral environment. "There are many complex interactions within and between cells, so determining if electromagnetic waves, which could be low or high frequencies, somehow play a role in transmitting and receiving meaningful signals through what might be an ion-rich, aqueous solution is a significant challenge," said Mike Fiddy, DARPA program manager. "If we can prove that purposeful signaling is happening, the next step would be to discover how the process works. This insight could eventually lead to a broad range of technologies important in biology as well as new small antenna designs, and other innovative concepts for communication systems in ever increasing cluttered electromagnetic environments." Fiddy is quick to note that RadioBio is a fundamental research effort. Even if the program proves that electromagnetic signaling occurs between cells, applications would likely be many years away. The program envisions two, 24-month phases. During Phase 1, performers will be asked to theoretically model and simulate hypothesized electromagnetic signaling pathways and then experimentally test those theoretical predictions. In Phase 2, the goal would be to independently develop test beds to replicate, confirm and demonstrate the pathways modeled in Phase 1 and reveal design principles potentially relevant to biological or other applications. "One of the greatest challenges of the program will be to develop theoretical and numerical models that can describe the properties of near-field, time-varying, sub-wavelength-size biological structures that function as antennas," Fiddy said. "To overcome such difficulties, RadioBio seeks expertise in antenna design, theoretical and structural biology, biochemistry and other related disciplines." A webcast Proposers Day for the RadioBio program is scheduled for Feb. 21, 2017. A Special Notice with details is available here/
Related Links Defense Advanced Research Projects Agency Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |