. | . |
You taste like mercury, said the spider to the fly by Staff Writers Hanover NH (SPX) Mar 24, 2016
More mercury than previously thought is moving from aquatic to land food webs when stream insects are consumed by spiders, a Dartmouth College-led study shows. The findings, which appear in the journal Ecological Applications, shed new light on the influence of dissolved organic carbon in the spread of mercury contamination. A PDF is available on request. Mercury concentrations in aquatic environments have increased globally, exposing consumers of aquatic organisms to high mercury levels. Exposure to mercury depends on their food sources as well as environmental factors influencing mercury's bioavailability. The majority of the research on the transfer of methylmercury, a toxic and bioaccumulating form of mercury, between aquatic and terrestrial food webs has focused on land carnivores that primarily eat fish. But a gap exists in our understanding of the factors regulating methylmercury bioaccumulation by other terrestrial predators, specifically consumers of adult aquatic insects. Because dissolved organic carbon binds tightly to methylmercury, affecting its transport and availability in aquatic food webs, the Dartmouth-led team hypothesized that dissolved organic carbon affects methylmercury transfer from stream food webs to terrestrial predators feeding on emerging adult insects. They tested this hypothesis by collecting data over two years from 10 streams spanning a broad range of dissolved organic carbon and methylmercury concentrations in New Hampshire. Their results show that there is transfer of methylmercury from aquatic systems to terrestrial food webs when stream invertebrates emerge from streams and are caught and consumed by spiders. In addition, the amount of dissolved organic carbon in the stream mediates the amount of methylmercury that is bioavailable to the aquatic and terrestrial food webs. The more dissolved organic carbon there was in the water, the more methylmercury there was as well. But streams with the highest dissolved organic carbon concentrations had emerging stream prey and spiders with lower methylmercury concentrations than streams with intermediate dissolved organic carbon concentrations. Therefore, the streams with the highest methylmercury concentrations did not have the greatest bioaccumulation in the stream invertebrates or spiders. "Our paper is important because the role of dissolved organic carbon in mediating the bioavailability of methylmercury is still poorly understood, and the reach of methylmercury from aquatic systems where it is produced to terrestrial systems is broader than previously recognized," says lead author Ramsa Chaves-Ulloa, who conducted the study as part of her PhD at Dartmouth's Department of Biological Sciences. The study included researchers from Dartmouth, Bates College, Colby-Sawyer College and the Bates Institute of Ecosystem Studies.
Related Links Dartmouth College Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |