. Earth Science News .
Giant Impact Theory For Moon Formation Boosted

This image is based upon a simulation of a lunar-forming impact from Canup and Asphaug 2001. The smaller, impacting object is Mars-sized and impacts the Earth obliquely in a counter-clockwise sense. Most of the impacting object eventually ends up on the Earth, but some fraction of it remains dispersed in a cloud of debris orbiting the planet. Color in the simulation is representative of the degree to which the planetary rock has been heated by the impact. The entire impact sequence covers about 24 hours of simulated time. At the end of the impact, the central Earth has a rotational day of only about 5 hours. Copyright Southwest Research Institute 2001
Boulder - August 15, 2001
The "giant impact" theory, first proposed in the mid-1970s to explain how the Moon formed, has received a major boost as new results demonstrate for the first time that a single impact could yield the current Earth-Moon system.

Simulations performed by researchers at Southwest Research Institute (SwRI) and the University of California at Santa Cruz (UCSC) show that a single impact by a Mars-sized object in the late stages of Earth's formation could account for an iron-depleted Moon and the masses and angular momentum of the Earth-Moon system.

This is the first model that can simultaneously explain these characteristics without requiring that the Earth-Moon system be substantially modified after the lunar forming impact. The findings appear in the August 16 issue of Nature.

The Earth-Moon system is unusual in several respects. The Moon has an abnormally low density compared to the terrestrial planets (Mercury, Venus, Earth, and Mars), indicating that it lacks high-density iron. If the Moon has an iron core, it constitutes only a few percent of its total mass compared to Earth's core, which is about 30 percent of its mass.

The angular momentum of the Earth-Moon system, contained in both the Earth's spin and the Moon's orbit, is quite large and implies that the terrestrial day was only about five hours long when the Moon first formed close to the Earth. This characteristic provides a strong constraint for giant impact models.

Previous models had shown two classes of impacts capable of producing an iron-poor Moon, but both were more problematic than the original idea of a single Mars-sized impactor in the last stages of Earth's formation.

One model involved an impact with twice the angular momentum of the Earth-Moon system; this would require that a later event (such as a second large impact) alter the Earth's spin after the Moon's formation.

The second model proposed that the Moon-forming impact occurred when Earth had only accreted about half its present mass. This required that the Earth accumulated the second half of its mass after the Moon formed.

However, if the Moon also accumulated its proportionate share of material during this period, it would have gained too much iron-rich material -- more than can be reconciled with the Moon today.

The models developed by SwRI and UCSC use the modeling technique known as smooth particle hydrodynamics, or SPH, which also has been used in previous formation studies. In SPH simulations, the colliding planetary objects are modeled by a vast multitude of discrete spherical volumes, in which thermodynamic and gravitational interactions are tracked as a function of time.

The new high-resolution simulations show that an oblique impact by an object with 10 percent the mass of the Earth can eject sufficient iron-free material into Earth-orbit to yield the Moon, while also leaving the Earth with its final mass and correct initial rotation rate. This simulation also implies that the Moon formed near the very end of Earth's formation.

"The model we propose is the least restrictive impact scenario, since it involves only a single impact and requires little or no modification of the Earth-Moon system after the Moon-forming event," says the paper's lead author, Dr. Robin M. Canup, assistant director of the SwRI Space Studies Department in Boulder.

UCSC Professor Erik Asphaug adds, "Our model requires a smaller impactor than previous models, making it more statistically probable that the Earth should have a Moon as large as ours."

Modeling lunar formation is important to the overall understanding of the origin of the terrestrial, or Earth-like, planets.

"It is now known that giant collisions are a common aspect of planet formation, and the different types of outcomes from these last big impacts might go a long way toward explaining the puzzling diversity observed among planets," says Asphaug.

The Moon is also believed to play an important role in Earth's habitability because of its stabilizing effect on the tilt of Earth's rotational pole. "Understanding the likelihood of Moon-forming impacts is an important component in how common or rare Earth-like planets may be in extrasolar systems," adds Canup.

Related Links
Southwest Research Institute
University of California at Santa Cruz
TerraDaily
Search TerraDaily
Subscribe To TerraDaily Express

SPACE SCIENCE
Faint Sniffs From Eons Past
Cameron Park - March 26, 2001
Newly analysed data from the Lunar Prospector spacecraft looks set to confirm evidence of residual interior venting in a few remaining areas on the moon's nearside surface.

Old Meteorites Support Lunar Cataclysm
Tucson - Nov 30, 2000
Lunar meteorite ages present new, strong evidence for the "lunar cataclysm," a 20-to-200 million-year episode of intense bombardment of the moon and the Earth at 3.9 billion years ago -- when the first evidence of life appeared on Earth, planetary scientists report in the Dec. 1 issue of Science.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.