. Earth Science News .
Researchers Create DNA-Based Sensors For Nano-Tongues And Nano-Noses

Although nanotubes have many applications, they are extremely sensitive to electrostatic variations in their environment, whether the nanotube is in a liquid or in air.
Philadelphia PA (SPX) Sep 16, 2005
Nano-sized carbon tubes coated with strands of DNA can create tiny sensors with abilities to detect odors and tastes, according to researchers at the University of Pennsylvania and Monell Chemical Sciences Center.

Their findings are published in the current issue of the journal Nano Letters, a publication of the American Chemical Society.

According to the researchers, arrays of these nanosensors could detect molecules on the order of one part per million, akin to finding a one-second play amid 278 hours of baseball footage or a single person in Times Square on New Years' Eve.

In the report, the researchers tested the nanosensors on five different chemical odorants, including methanol and dinitrotoluene, or DNT, a common chemical that is also frequently a component of military-grade explosives. The nanosensors could sniff molecules out of the air or taste them in a liquid, suggesting applications ranging from domestic security to medical detectors.

"What we have here is a hybrid of two molecules that are extremely sensitive to outside signals: single stranded DNA, which serves as the 'detector,' and a carbon nanotube, which functions as 'transmitter,'" said A. T. Charlie Johnson, associate professor in Penn's Department of Physics and Astronomy.

"Put the two together and they become an extremely versatile type of sensor, capable of finding tiny amounts of a specific molecule."

Given the size of such sensors each carbon nanotube is about a billionth of a meter wide, Johnson and his colleagues believe arrays of these sensors could serve as passive detection systems in almost any location. The sensor surface is also self-regenerating, with each sensor lasting for more than 50 exposures to the targeted substances, which means they would not need to be replaced frequently.

The specificity of single-stranded DNA is what makes these sensors so capable. These biomolecules can be engineered, in a process called directed evolution, to recognize a wide variety of targets, including small molecules and specific proteins.

Likewise, the nanotubes are ideal for signalling when the DNA has captured a target molecule. Single-walled nanotubes are formed from a single sheet of carbon molecules connected together and then rolled.

It is a unique material in which every atom is on both the surface and the interior. Although nanotubes have many applications, they are extremely sensitive to electrostatic variations in their environment, whether the nanotube is in a liquid or in air.

"When the DNA portion of the nanosensor binds to a target molecule, there will be a slight change in the electric charge near the nanotube," Johnson said. "The nanotube will then pick up on that change, turning it into an electric signal that can then be reported."

According to Johnson, an array of 100 sensors with different response characteristics and an appropriate pattern recognition program would be able to identify a weak known odor in the face of a strong and variable background.

"There are few limits as to what we could build these sensors to detect, whether it is a molecule wafting off an explosive device or the protein byproduct of a cancerous growth," Johnson said.

Researchers involved in the project include Cristian Staii, a graduate student in the Department of Physics and Astronomy in Penn's School of Arts and Sciences; Michelle Chen, a graduate student in the Department of Material Science and Engineering in Penn's School of Engineering and Applied Science; and Alan Gelperin of the Monell Chemical Senses Center.

Funding for this research was provided by the U.S. Department of Energy, grants to Penn's Laboratory on the Research of the Structure of Matter through the National Science Foundation and Monell.

Related Links
University of Pennsylvania
TerraDaily
Search TerraDaily
Subscribe To TerraDaily Express

Public Attitudes Toward Nano
New York (UPI) Sep 14, 2005
When it comes to nanotechnology, the U.S. public apparently looks forward most to advanced medical applications that save lives and improved consumer goods that enhance quality of life, experts told UPI's Nano World.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.