. Earth Science News .
Precision Bonding Makes Tiny High Performance Actuators Possible

Dr. Srinivas A. Tadigadapa, Penn State associate professor of electrical engineering and a developer of the bonding process and new microactuator.
  • See possible applications of the new piezoelectric microactuator.
  • University Park PA (SPX) Oct 05, 2005
    Using a new precision bonding process they developed, Penn State researchers have designed and fabricated tiny new piezoelectric microactuators - the largest only a hair's breadth wide - based on coupling commercially available materials with existing micromachining technology.

    The new actuators promise to be low cost, and capable of providing controlled force, high resolution and large displacements appropriate for applications in RF switches for cell phones, for example, or optical switches for wide screen TVs. Other potential applications include microfluidic pumps and valves, micromanipulators for nanoscale handling and atomic force microscope drives.

    Dr. Srinivas A. Tadigadapa, associate professor of electrical engineering and a developer of the bonding process and microactuator, says, "These new piezoelectric microactuators are the first realized using microfabrication methods, a mature technology used to make computer chips and micromachines from silicon-based materials. Our new low temperature wafer bonding techniques, which make the actuators possible, can also be used for precision integration of dissimilar materials in other micro-electro-mechanical systems."

    The new actuators and bonding process are described in a paper, Fabrication and performance of a flextensional microactuator, which appears in the current online edition of the Journal of Micromechanics and Microengineering (JMM). The paper will also be featured in the October print version of JMM.

    The authors are Jongpil Cheong, who earned his doctorate at Penn State this year, Abhijat Goyal, a doctoral candidate in electrical engineering, Dr. Tadigadapa and Dr. Christopher D. Rahn, professor of mechanical engineering.

    The new actuators are made from flat strips of bulk PZT, a commercially available piezoelectric material that shrinks slightly when a voltage is applied to it, and a precision micromachined silicon beam. Bonding the silicon beam to the PZT amplifies and converts the PZT shape change into a convex deflection when the silicon beam buckles as the PZT shrinks.

    In operation in the actuator, the measured deflection of the silicon beam shows a gain factor of 20 with respect to the PZT dimensional change.

    For the bonding process in fabricating the new actuators, the Penn State researchers use photolithography and low temperature solders to produce the distinctive bridge shape they need.

    Dr. Tadigadapa notes, "The PZT depoles if you heat it too high. Therefore, the temperature is crucial. A low temperature solder bonding process at 200 C was used in this work."

    Using their new approach, the researchers have fabricated actuators with dimensions ranging from 350 to 600 microns in length, 50 to 100 microns (about the width of a human hair) in width, and 5 to 6 microns in thickness.

    In tests, the actuators showed good repeatability with a large amplitude stroke of about 8 microns when actuated using -100V to 100V. The bandwidth of the actuator was measured at 265 KHz.

    Related Links
    Penn State
    TerraDaily
    Search TerraDaily
    Subscribe To TerraDaily Express

    QinetiQ Nanomaterials' Breakthrough In Hybrid Aluminium Powders
    London, UK (SPX) Sep 14, 2005
    Tesimorph EAB-80, a new experimental aluminium / boron material with a particle size of 80nm, has just been developed under a research contract from the UK MOD by QinetiQ Nanomaterials Limited (QNL).



    Thanks for being here;
    We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

    With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

    Our news coverage takes time and effort to publish 365 days a year.

    If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
    SpaceDaily Contributor
    $5 Billed Once


    credit card or paypal
    SpaceDaily Monthly Supporter
    $5 Billed Monthly


    paypal only














    The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.