. | . |
NEAR Returns Basic Eros Data Laurel - February 8, 1999 - Asteroid 433 Eros is slightly smaller than predicted, with at least two medium-sized craters, a long surface ridge, and a density comparable to the Earth's crust, according to measurements from NASA's Near Earth Asteroid Rendezvous (NEAR) spacecraft. NEAR's science instruments observed about two-thirds of Eros on Dec. 23, 1998, as the spacecraft flew by the asteroid following an unsuccessful firing of its main engine a few days earlier. A subsequent successful firing of the engine put NEAR on course to rendezvous with Eros to begin its planned yearlong orbital mission starting in mid-February 2000. Scientists and engineers at The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, MD, which manages the mission, and science team members from affiliated institutions quickly planned the valuable flyby observations in the wake of the unsuccessful engine burn on Dec. 20. During the flyby, 222 photos and supporting spectral observations were taken from as close as 2,375 miles (3,830 kilometers) from the asteroid by the spacecraft's multispectral imager, infrared spectrometer, and radio science experiment. "The flyby of Eros has given us fundamental information that will help us plan a better orbital mission at Eros," said Dr. Andrew F. Cheng, NEAR project scientist at APL. "It has taken some of the risk out of our orbit insertion maneuver and early operations." First observed from the Earth more than 100 years ago, Eros was known to be an S-type asteroid with high concentrations of silicate minerals and metal. However, few details about its structure or composition are observable from the ground. The NEAR flyby produced evidence of variations in surface color and reflected light (or albedo) that suggest the asteroid has a diverse surface makeup. Closer observations during the comprehensive yearlong orbital study of Eros will be needed to determine its precise composition. The science team has determined that Eros is slightly smaller than originally estimated from ground-based radar observations, with a size of 21 by 8 by 8 miles (33 by 13 by 13 kilometers), versus an estimate of 25.3 by 9 by 8 miles (40.5 by 14.5 by 14 km). The asteroid rotates once every 5.27 hours and has no discernible moons. The asteroid's density is approximately 1.55 ounces per cubic inch (2.7 grams per cubic centimeter), close to the average density of Earth's crust. This makes Eros about twice as dense as asteroid 253 Mathilde, a C-type, carbon-rich asteroid that NEAR flew past in June 1997, and about the same density as S-type asteroid 243 Ida, which NASA's Galileo spacecraft flew past in 1993. Eros and Ida are the only S-type asteroids for which a mass and density have been determined. Flyby imaging of the asteroid's surface revealed a prominent elongated ridge that extends along its length for as much as 12 miles (20 km). "This ridge-like feature, combined with the measurements of high density, suggests that Eros is a homogeneous body rather than a collection of rubble" such as Mathilde appears to be, said Dr. Joseph Veverka, of Cornell University, Ithaca, NY, who heads the mission's imaging team. "It might even be a remnant of a larger body that was shattered by an impact." The surface of Eros is pocked with craters. The two largest craters are four miles and 5.3 miles (8.5 and 6.5 km) in diameter, less than half the size of asteroid Mathilde's largest craters. The existence of fewer, smaller craters could be an indication that Eros has a relatively young surface when compared to Ida. NEAR and Eros will cross paths again in February 2000. The spacecraft will then be inserted into orbit around the asteroid and begin its yearlong study. Images taken during orbit are expected to have more than 200 times better resolution than those obtained during the flyby and will be taken from as close as nine miles (15 km) from the asteroid's surface.
NEAR Reports At TerraDaily
Asteroid and Other Debris at Spacer.Com
SpaceDev Articles
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |