. | . |
Breakthrough Mine-Detection Turns Ocean Floor "Transparent"
Since 1776, when naval mines were invented, navies have rightfully feared the stealthy and relatively simple weapons, which can disable or destroy warships and paralyze vital shipping. Navies worldwide employ a host of mine-detection technologies and techniques, most of them complicated, expensive, and far from perfect. So a simpler, more effective method for detecting these mines, developed by a physicist at North Carolina State University, could make big waves in naval headquarters around the globe. Unlike current mine-detection techniques, the patented methodology finds objects buried in the ocean floor without the use of complex, unreliable modeling and without the usual arrays of sonar transmitters and receivers. Instead, the method records the return echo of a sonar transceiver's "ping," then time-reverses and transmits that signal. The following echo clearly shows buried objects, and suppresses the response from the seafloor itself, making the underwater terrain "transparent." Dr. David M. Pierson, then a doctoral student in physics at NC State, demonstrated the new approach in research he conducted with Dr. David E. Aspnes, Distinguished University Professor of Physics, in late 2003. The project was supported by a grant from the Office of Naval Research. Pierson has since joined the Applied Physics Laboratory of Johns Hopkins University in Baltimore, where his work is supported in part by the U.S. Navy. "The method has not been explored as a solution to this problem until now," said Pierson. "Using time reversal on the return echoes back scattered by buried mines gave us results we considered amazing." According to Aspnes, the young physicist's research is a breakthrough. "Time reversal is a technique that has been used before in various contexts, including optics and acoustics, but before Pierson's work the advantages of time reversal for isolating targets in backscattered signals was never before recognized." Using time reversal to find buried mines requires only one transceiver, said Pierson, although more can be used, and the method isn't limited by the composition of the ocean floor. "Previous methods had to incorporate a lot of complex modeling of the seafloor and the ocean environment," Pierson said, "and required sophisticated software and hardware systems. My time-reversal technique not only simplifies the needed equipment, but also can be implemented using existing sonar equipment, with minor software changes. More elaborate analyses of echoes are also made possible." What Pierson has done, said Aspnes, is to demonstrate a new approach that uses sonar but is simpler and works better than any previous method. "In Pierson's approach," he said, "a 'ping' is first transmitted from a sonar transceiver. The return echo is then recorded, time-reversed, and transmitted. He discovered that in the next echo the response from the seafloor was suppressed, but the echo from buried objects was enhanced. This enhancement is seen even if the signal from the buried object is too small to be detected in the first return." The NC State discovery should please naval mine-detection experts, who now use everything from dolphins to divers to sophisticated software modeling and elaborate sonar arrays in their grim work. And it should send those who design such mines back to their equally grim drawing boards. Related Links North Carolina State University s TerraDaily Search TerraDaily Subscribe To TerraDaily Express Space Technology Helps Wind Surfer Cross The Pacific Ocean Paris (ESA) Nov 04, 2003 Assisted by ESA technology, Frenchwoman Rapha�la le Gouvello has completed a remarkable odyssey � a single-handed windsurfer crossing of the Pacific Ocean. It is a successful demonstration of just what can be achieved using renewable energy!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |