. | . |
The Good, The Bad, And The Ozone
Moffet Field CA (SPX) Jul 12, 2004 A powerful new instrument heading to space this week is expected to send back long-sought answers about greenhouse gases, atmospheric cleansers and pollutants, and the destruction and recovery of the ozone layer. Only a cubic yard in size but laden with technical wizardry, the High-Resolution Dynamic Limb Sounder (HIRDLS) will measure a slew of atmospheric chemicals at a horizontal and vertical precision unprecedented in a multi-year space instrument. Scientists at the National Center for Atmospheric Research (NCAR), University of Colorado, and University of Oxford developed HIRDLS (pronounced "hurdles") with funding from NASA and United Kingdom sources. The U.S. space agency plans to launch the 21-channel radiometer along with three other instruments aboard its Aura satellite from Vandenberg Air Force Base in California. HIRDLS will capture the chemistry and dynamics of four layers of the atmosphere that together span a region 8 to 80 kilometers (5 to 50 miles) above Earth's surface: the upper troposphere, the tropopause, the stratosphere, and the mesosphere. Using infrared radiation as its yardstick, the radiometer will look through Earth's atmosphere toward the planet's limb, or edge. It will find and measure ten different chemical species, characterize airborne particles known as aerosols, and track thin cirrus clouds, all at a vertical resolution of half a kilometer (a third of a mile) and a horizontal resolution of 50 kilometers (30 miles). The signal-to noise ratio is one tenth that of previous detectors. "The angular resolution of the instrument's mirror position is equivalent to seeing a dime eight miles away," says principal investigator John Gille, of NCAR and the University of Colorado.
A few questions HIRDLS data will answer Why does the tropopause exist and what is its role in conveying gases from the troposphere into the stratosphere, especially in the tropics? Convection was once thought to be the vehicle, but scientists now know warm, rising air normally stops at the frigid, dry tropopause. Why is the stratosphere, historically dry, now getting wetter? The answer could shed light on how a changing climate is modifying the atmosphere and how those modifications could in turn feed back into our climate and weather near the ground. How much ozone is sinking from the stratosphere into the upper troposphere? The answer will help scientists separate natural ozone pollution from human-made sources and give new information on how the gas is affecting chemistry closer to the ground. Scientists also expect to see clearly for the first time the dynamic processes that cause water vapor filaments and tendrils to break off and mix with other gases in the troposphere.
Good and bad ozone at different altitudes At 10 kilometers (6 miles), ozone is a greenhouse gas, which is good because the natural greenhouse effect is necessary to warm the planet, but bad if the warming continues to increase at too rapid a rate. At 5 kilometers (3 miles), ozone is a source of the hydroxyl radical, which cleanses the atmosphere of pollutants. But at ground level, ozone is a primary pollutant in smog, causing respiratory problems and damaging trees and crops. Unless molecular oxygen in the atmosphere is constantly replenished by photosynthesis, it is quickly consumed in chemical reactions, in the atmosphere, on land and in seawater. So the presence of a large amount of oxygen, or its ozone proxy, in an extrasolar planet's atmosphere would be a sign that it might host an ecosystem like present-day Earth's. A spectroscope that might detect infrared or visible light looking back on Earth or outwards to other planets might focus mainly on four gases that are found in Earth's atmosphere and linked to life:
TerraDaily Search TerraDaily Subscribe To TerraDaily Express CU-Boulder Satellite Instrument To Provide New Details On Ozone Boulder CO (SPX) Jun 22, 2004 Just after 3 a.m. on July 10, University of Colorado at Boulder researcher John Gille expects to watch a new NASA satellite blast into orbit from the dark California coastline on a mission to study Earth's protective ozone layer, climate and air quality changes with unprecedented detail.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |