. Earth Science News .
Armored Bubbles Can Exist In Stable Non Spherical Shapes

Boston MA (SPX) Dec 15, 2005
Researchers at Harvard University have demonstrated that gas bubbles can exist in stable non-spherical shapes without the application of external force. The micron- to millimeter scale peapod-, doughnut- and sausage-shaped bubbles, created by coating ordinary gas bubbles with a tightly packed layer of tiny particles and then fusing them, are described this week on the web site of the journal Nature.

"Particles have been used to stabilize emulsions and foams for over 100 years," says lead author Anand Bala Subramaniam, a research associate in Harvard's Division of Engineering and Applied Sciences who conducted much of the work before receiving his undergraduate degree from Harvard College last June.

"However, we've demonstrated that not only are particles useful for making bubbles last longer, they fundamentally alter the properties of these bubbles. Instead of behaving like a fluid surface that flows to balance unequal stresses, the 'armor' of particles on the surface of the bubbles actually supports the unequal stresses inherent in non-spherical shapes."

Surface tension gives all bubbles and drops their perfectly spherical shape by minimizing the surface area for a given volume. Ordinarily if two bubbles are fused, the product is a larger but still spherical bubble. But when particles are strongly anchored to the bubble surface and the bubbles are fused, a stable sausage shape is produced.

"The bubble wants to reduce its surface area by going back to a spherical shape, but the strong anchoring of the particles on the surface prevents their expulsion," Bala Subramaniam says. "The particles end up tightly packed, and eventually push against each other strongly, allowing the bubble surface to carry forces to support a non-spherical shape."

Although the particles are jammed, they are not bonded to each other, Bala Subramaniam adds. It is this absence of permanent bonds that allowed the researchers to reshape and remold the initially sausage-shaped bubbles into peapods, disks and donuts.

The phenomenon of irregularly shaped bubbles has been observed in nature; air bubbles in impure ocean water are often non-spherical, their shapes distorted by surface dirt. The concepts of jamming and non-spherical shapes may also be useful for understanding other systems such as biological membranes.

Bala Subramaniam and his colleagues have found particle jamming on surfaces to be a general phenomenon compatible with a wide range of particle coatings, including polystyrene, polymethylmethacrylate, gold and zirconium oxide. Both particle and bubble size can vary widely, with the largest armored bubbles roughly 10,000 times the size of the smallest.

"We have provided a general explanation of why these non-spherical bubbles can be observed," says co-author Howard A. Stone, Bala Subramaniam's advisor and the Vicky Joseph Professor of Engineering and Applied Mathematics at Harvard.

"Bubbles are engineered into many consumer products. The ability to alter the shapes of bubbles and liquid drops in products like ice cream or shaving foams or creams may provide a means to alter the consistency or texture of these products. The non-spherical bubbles could also find use as vessels for delivering drugs, vitamins or flavors."

Bala Subramaniam and Stone's co-authors are Manouk Abkarian and Lakshminarayanan Mahadevan of Harvard's Division of Engineering and Applied Sciences. Their work was supported by Unilever.

Related Links
Harvard University Division of Engineering and Applied Sciences
TerraDaily
Search TerraDaily
Subscribe To TerraDaily Express

Physicists Store And Retrieve Single Photons Between Remote Memories
Atlanta GA (SPX) Dec 12, 2005
A series of publications in the journal Nature highlights the race among competing research groups toward the long-anticipated goal of quantum networking.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.