Subscribe free to our newsletters via your
. Earth Science News .




EPIDEMICS
A New Weapon in the War Against Superbugs
by Staff Writers
Tel Aviv, Israel (SPX) Dec 03, 2013


File image.

In the arms race between bacteria and modern medicine, bacteria have gained an edge. In recent decades, bacterial resistance to antibiotics has developed faster than the production of new antibiotics, making bacterial infections increasingly difficult to treat. Scientists worry that a particularly virulent and deadly "superbug" could one day join the ranks of existing untreatable bacteria, causing a public health catastrophe comparable with the Black Death.

Now research led by Dr. Udi Qimron of Tel Aviv University's Department of Clinical Microbiology and Immunology at the Sackler Faculty of Medicine has discovered a protein that kills bacteria. The isolation of this protein, produced by a virus that attacks bacteria, is a major step toward developing a substitute for conventional antibiotics.

"To stay ahead of bacterial resistance, we have to keep developing new antibiotics," said Dr. Qimron. "What we found is a small protein that could serve as a powerful antibiotic in the future."

Dr. Ido Yosef, Ruth Kiro, and Shahar Molshanski-Mor of TAU's Sackler Faculty of Medicine and Dr. Sara Milam and Prof. Harold Erickson of Duke University contributed to the research, published in the Proceedings of the National Academy of Sciences.

Teaming up with a killer
Bacterial resistance is a natural process. But over the past sixty years or so, the misuse and overuse of antibiotics has pushed more and more bacteria to become more and more resistant, undermining one of the pillars of modern health care. Recently, the World Health Organization named growing antibiotic resistance one of the three greatest threats to public health.

Bacteriophages, often referred to as "phages," are viruses that infect and replicate in bacteria. Because they coevolved with bacteria, they are optimized to kill them. As proof of their endurance, phages are the most common life form on earth, outnumbering bacteria 10 to one.

In places like the former Soviet Union, phages have been used to treat bacterial infections for the past hundred years. Harmless to humans, they inject their DNA into bacteria and rapidly replicate, killing their hosts.

"Ever since the discovery of bacteriophages in the early 20th century, scientists have understood that, on the principle of the 'enemy of my enemy is my friend,' medical use could be made of phages to fight viruses," said Dr. Qimron.

Breaking out the little guns
Dr. Qimron and his colleagues set out to understand how all 56 proteins found in T7, a particularly virulent phage that infects Escherichia coli bacteria, contribute to its functioning.

They discovered that one of the proteins, called 0.4, impedes cell division in E. coli, causing the cells of the bacteria to elongate and then die. The protein is common to many bacteria and a similar process occurs in all bacteria, so the finding may have wide application.

No bacteriophage preparation has been approved in Western medicine for treating systemic bacterial infections. One reason is their inability to penetrate body tissues effectively.

They are filtered effectively from the bloodstream by the spleen and liver, and occasionally neutralized by antibodies. But the 0.4 protein is much smaller than a whole phage, and so should be able to penetrate tissue better, getting to the bacteria to do its deadly work.

The major challenge for pharmaceutical companies will be figuring out how exactly to deliver the protein as a drug, said Dr. Qimron. In the meantime, he continues to hunt for other proteins that kill bacteria.

.


Related Links
American Friends of Tel Aviv University
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EPIDEMICS
Is S.Africa's HIV treatment success breeding complacency?
Johannesburg (AFP) Nov 29, 2013
South Africa has been hailed as a model for HIV treatment, but some now fear its very success may be breeding complacency and making people less careful about infection. South Africa's free drugs programme for AIDS has expanded rapidly to 2.4 million people - more than double the number three years ago - and boasts the largest treatment project in the world. At a clinic at one Johannes ... read more


EPIDEMICS
Late treatment for many Philippine typhoon victims: WHO

Human trafficking a worry in post-typhoon Philippines: US

China graft investigation into ex-head of quake city

UN to seek more aid for Philippines typhoon displaced

EPIDEMICS
Google steps up its battle for Internet 'cloud'

Use of ancient lead in modern physics experiments ignites debate

Crippled space telescope given second life, new mission

Scientists create perfect solution to iron out kinks in surfaces

EPIDEMICS
Microplastics make marine worms sick

Marine reserves enhance resilience to climate change

Malaysia tribe end protest as mega-dam floods their homes

Showdown looms for lucrative tuna industry

EPIDEMICS
Arctic study shows key marine food web species at risk from increasing CO2

'Noisy' glaciers sound off as they melt into ocean waters

Russian court frees last Greenpeace activist

Greenland's shrunken ice sheet: We've been here before

EPIDEMICS
Benefit of bees even bigger than thought: food study

Romania sees opportunity in China's new taste for meat

Flower Power - Researchers breed new varieties of chamomile

A plant which acclimatizes with no exterior influence

EPIDEMICS
NASA's HS3 Hurricane Mission Called it a Wrap for 2013

What drives aftershocks?

Heavy rains, flooding leave two dead in Cuba

Weaker than expected Atlantic hurricane season ends

EPIDEMICS
Mali defence minister vows to support coup leader's trial

French army buildup in CAR unlikely to quell bloodshed

Several said dead in air raid in Sudan's Darfur: peacekeepers

Nigeria military says bombed Boko Haram camps

EPIDEMICS
Evidence of funerary meal found at 13,000-year-old gravesite in Israel

Skull find shows women were sacrificed in ancient China

Study suggests inbreeding shaped course of early human evolution

Investments in Aging Biology Research will Pay Longevity Dividend




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement