. Earth Science News .
WATER WORLD
A Snapshot of molecules in a deep-sea symbiosis
by Staff Writers
Bremen, Germany (SPX) Feb 04, 2020

Bathymodiolus mussels and other inhabitants of hydrothermal vents on the Mid-Atlantic Ridge off the coast of the Azores.

Bacteria in our environment can be difficult to study: They are tiny and often live under conditions hard to recreate in the lab, for example in the deep sea or as symbionts in an animal host (or both, as the symbiotic bacteria in the present study).

Investigations of the bacterial genome tell us what the microbes are theoretically capable of. What they actually do, however, is not revealed. Thus, scientists study the so-called metabolome of the bacteria: It comprises every metabolite the cells produce or consume, for example proteins, sugars or fats.

A team of researchers around Benedikt Geier and Manuel Liebeke from the Max Planck Institute for Marine Microbiology in Bremen has now developed a method to identify individual bacteria and at the same time determine which metabolites are present in the cells.

With the new method they investigate how bacteria live and survive as symbiotic tenants in deep-sea mussels. Liebeke and his group analysed hundreds of metabolic products on an area smaller than one square millimeter.

This enables them to understand how the symbiotic microbes live and communicate in their host. "We virtually take a snapshot of bacteria at work - just as it functions in its natural environment, here within a single animal cell," says Liebeke. "And we can do this with an impressive resolution of a few micrometers, about ten times thinner than a human hair."

Snap-frozen for the best snapshot: Not just what is happening, but also who is involved!

"For our analyses, we use mussel tissue that has been snap-frozen and can thus be cut into wafer-thin slices," Benedikt Geier explains. "From these slices, we take a snapshot of the chemical compounds of the cells using a special mass spectrometry technique called MALDI-MS imaging. When analysing this snapshot in detail, we are able to distinguish many different metabolites on a very small area."

They provide information about which metabolites the bacteria use for what purpose and how they cohabit with their mussel host. In addition to the MALDI-MSI at the Max Planck Institute in Bremen, Liebeke and his team used a new MS imaging prototype at the Justus Liebig University in Gieben in close cooperation with Professor Spengler, which enabled particularly high-resolution insights.

Correct conclusions from the images of the metabolites are only possible if we also know who produces or uses them. "To date, we have only been able to measure the metabolites," explains Geier, "but we did not know whether any bacteria were involved and if so, which ones."

To solve this prob lem, the researchers added a second technique, the so-called fluorescence in situ hybridization, or FISH, to identify individual bacterial cells in the same sample. "The combination with FISH was the key for us to interpret the high-resolution MALDI-MS images in a meaningful way and correlate them with the bacteria in the mussel tissue."

From the deep sea, now on camera
For the present study, Geier and his colleagues used samples from black smokers in the deep sea - towering chimneys where hot, mineral-rich water gushes out of the seafloor. Animals and bacteria can only survive there in symbiotic community. Geier investigates the coexistence of bacteria and mussels, in particular the close linkage of their metabolism, as part of his PhD-thesis. With the new method, he was able to show that the composition of lipids in the mussel differs significantly in body regions with and without bacterial tenants.

"Up to now, we were not able to gain such insights as the samples were homogenised, that is virtually blended, before analysis," Geier explains. "Moreover the fact that our method works on samples coming directly from the environment and not from the lab underlines its great potential," he continues.

All plants and animals as well as us humans live in association with microorganisms, sharing metabolites through close interactions. "Applying this method in other host-microbe interactions will allow for many exciting new insights into the secret life of microbes. I am curious to see whether we can use this imaging approach for looking into the shared chemistry between microbes and organs in whole animals. There is still a lot to discover!"

Research paper


Related Links
Max Planck Institute For Marine Microbiology
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Grey seals observed communicating by clapping underwater
Washington DC (UPI) Feb 03, 2020
For the first time, grey seals have been observed clapping underwater to communicate. Like whales and dolphins, seals typically use a variety of calls to communicate with one another. But during breeding season, researchers discovered grey seals using claps to demonstrate their strength to would be competitors and potential mates. "The discovery of 'clapping seals' might not seem that surprising, after all, they're famous for clapping in zoos and aquariums," lead research David Hocking, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Release contaminated Fukushima water into sea: Japan panel

Earth's most biodiverse ecosystems face a perfect storm

Seven WWII bombs made safe at Tesla's German factory site

'See the doctor': fever-hit patients fret in China outbreak city

WATER WORLD
Can wood construction transform cities from carbon source to carbon vault

Sustainable 3D-printed super magnets

"Breakthrough" 3D-printed rocket engine tests completed in Fife, Scotland

Two satellites just avoided a head-on smash. How close did they come to disaster?

WATER WORLD
Understanding long-term trends in ocean layering

A Snapshot of molecules in a deep-sea symbiosis

Grey seals observed communicating by clapping underwater

Bulgarians' patience runs dry over water crisis

WATER WORLD
The first potentially invasive species to reach the Antarctica on drifting marine algae

Global science team on red alert as Arctic lands grow greener

Robotic submarine snaps first-ever images at foundation of notorious Antarctic glacier

Hot pots helped ancient Siberian hunters stay alive, warm

WATER WORLD
Plants manipulate their soil environment to assure a cheap, steady supply of nutrients

First release of genetically engineered moth could herald new era of crop protection

Harrington Seed Destructor kills nearly 100 percent of US agronomic weed seeds in lab study

Oak leaves contain potential cure for citrus greening disease

WATER WORLD
Flash floods kill nine in Indonesia

New Zealand volcano death toll rises to 21

Major quake hits Caribbean, triggering evacuations

Major quake hits Caribbean, triggering evacuations

WATER WORLD
Nigeria to receive $308m stolen by ex-dictator: US

'Jihadist attack' kills nearly 20 civilians in Burkina Faso

France to add 600 troops to fight insurgents in Africa

France ramps up Sahel military presence to counter jihadist threat

WATER WORLD
New study identifies Neanderthal ancestry in African populations and describes its origin

Driven by Earth's orbit, climate changes in Africa may have aided human migration

Early North Americans may have been more diverse than previously suspected

Researchers develop method to assess geographic origins of ancient humans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.