Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
A nanoscale window to the biological world
by Ken Kingery for VT News
Blacksburg VA (SPX) Dec 26, 2012


A novel microfluidics platform allowed viewing of structural details of rotavirus double-layered particles; the 3-D graphic of the virus, in purple, was reconstructed from data gathered by the new technique. Credit: Virginia Tech.

If the key to winning battles is knowing both your enemy and yourself, then scientists are now well on their way toward becoming the Sun Tzus of medicine by taking a giant step toward a priceless advantage - the ability to see the soldiers in action on the battlefield.

Investigators at the Virginia Tech Carilion Research Institute have invented a way to directly image biological structures at their most fundamental level and in their natural habitats. The technique is a major advancement toward the ultimate goal of imaging biological processes in action at the atomic level.

"It's sort of like the difference between seeing Han Solo frozen in carbonite and watching him walk around blasting stormtroopers," said Deborah Kelly, an assistant professor at the VTC Research Institute and a lead author on the paper describing the first successful test of the new technique. "Seeing viruses, for example, in action in their natural environment is invaluable."

The technique involves taking two silicon-nitride microchips with windows etched in their centers and pressing them together until only a 150-nanometer space between them remains. The researchers then fill this pocket with a liquid resembling the natural environment of the biological structure to be imaged, creating a microfluidic chamber.

Then, because free-floating structures yield images with poor resolution, the researchers coat the microchip's interior surface with a layer of natural biological tethers, such as antibodies, which naturally grab onto a virus and hold it in place.

In a recent study in Lab on a Chip, Kelly joined Sarah McDonald, also an assistant professor at the VTC Research Institute, to prove that the technique works.

McDonald provided a pure sample of rotavirus double-layered particles for the study.

"What's missing in the field of structural biology right now is dynamics - how things move in time," said McDonald. "Debbie is developing technologies to bridge that gap, because that's clearly the next big breakthrough that structural biology needs."

Rotavirus is the most common cause of severe diarrhea among infants and children. By the age of 5, nearly every child in the world has been infected at least once. And although the disease tends to be easily managed in the developed world, in developing countries rotavirus kills more than 450,000 children a year.

At the second step in the pathogen's life cycle, rotavirus sheds its outer layer, which allows it to enter a cell, and becomes what is called a double-layered particle. Once its second layer is exposed, the virus is ready to begin using the cell's own infrastructure to produce more viruses. It was the viral structure at this stage that the researchers imaged in the new study.

Kelly and McDonald coated the interior window of the microchip with antibodies to the virus. The antibodies, in turn, latched onto the rotaviruses that were injected into the microfluidic chamber and held them in place. The researchers then used a transmission electron microscope to image the prepared slide.

The technique worked perfectly.

The experiment gave results that resembled those achieved using traditional freezing methods to prepare rotavirus for electron microscopy, proving that the new technique can deliver accurate results.

"It's the first time scientists have imaged anything on this scale in liquid," said Kelly.

The next step is to continue to develop the technique with an eye toward imaging biological structures dynamically in action.

Specifically, McDonald is looking to understand how rotavirus assembles, so as to better know and develop tools to combat this particular enemy of children's health.

The researchers said their ongoing collaboration is an example of the cross-disciplinary work that is becoming a hallmark of the VTC Research Institute.

"It's an ideal collaboration because Sarah provides a phenomenal model system by which we can develop new technologies to move the field of microstructural biology forward," said Kelly.

"It's very win-win," McDonald added. "While the virus is a great tool for Debbie to develop her techniques, her technology is critical for allowing me to understand how this deadly virus assembles and changes dynamically over time."

The paper "Visualizing viral assemblies in a nanoscale biosphere" was published online and will appear in a 2013 edition of Lab on a Chip. The authors are Brian Gilmore, a research associate at the VTC Research Institute; Shannon Showalter, a research assistant at the VTC Research Institute; Madeline Dukes, an applications scientist at Protochips; Justin Tanner, a postdoctoral associate at the VTC Research Institute; Andrew Demmert, a student at the Virginia Tech Carilion School of Medicine; McDonald, in addition to her position at the VTC Research Institute, is an assistant professor of biomedical sciences and pathobiology in the Virginia-Maryland Regional College of Veterinary Medicine; and Kelly, in addition to her position at the VTC Research Institute, is an assistant professor of biological sciences in Virginia Tech's College of Science.

.


Related Links
Virginia Tech
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Survival of the females
Vienna, Austria (SPX) Dec 26, 2012
It is well known that many mammals are able to adjust the ratio of male and female young depending on the surrounding conditions at the time of conception but how precisely this is accomplished remains a matter for debate. A recent study in the group of Christine Aurich at the University of Veterinary Medicine, Vienna has provided important information on how the survival of female embryos ... read more


FLORA AND FAUNA
China suspends officials after 11 kids die in road wreck

'No Christmas' for Philippine typhoon victims

Christmas misery in Haiti camp, three years after quake

360,000 Haitians still displaced after 2010 quake: IOM

FLORA AND FAUNA
2012: Consumer tech takes center stage

Molecular levers may make materials better

Netflix blames Amazon for Christmas Eve outage

Turbopump Bearing Blamed For Failed Russian Comsat Orbiting

FLORA AND FAUNA
Spanish consumers prefer national fish

Study reveals that animals contribute to seagrass dispersal

Slab of Barrier Reef sea floor breaking off: scientists

Study: Hawaiian island slowly dissolving

FLORA AND FAUNA
W. Antarctic warming among world's fastest

Antarctic ice sheet warming faster than thought: study

NASA's Operation IceBridge Data Brings New Twist to Sea Ice Forecasting

Chief's hunger strike fuels Canada aboriginal drive

FLORA AND FAUNA
Small wasps to control a big pest?

Unraveling the threads: Simplest cotton genome offers clues for fiber improvements

Biologists design method to monitor global bee decline

A new, super-nutritious puffed rice for breakfast cereals and snacks

FLORA AND FAUNA
Olympics: Putin orders Sochi check after quake

Four dead as heavy rains flood Iraq capital

Thousands flee Malaysia floods, dam wall broken

Typhoon-hit Philippines threatened by new storm

FLORA AND FAUNA
Chad lifts expulsion order against critical Italian bishop

Mali Islamists destroying more Timbuktu mausoleums

Peacekeepers warn of potential catastrophe in Darfur

Outside View: Tunisia's path ahead

FLORA AND FAUNA
Scientists construct first map of how the brain organizes everything we see

Do palm trees hold the key to immortality?

Study: Human hands evolved as weapons

US shooting revives debate over videogame violence




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement