. | . |
A new perspective on the genomes of archaic humans by Staff Writers Stanford CA (SPX) Apr 28, 2021
A genome by itself is like a recipe without a chef - full of important information, but in need of interpretation. So, even though we have sequenced genomes of our nearest extinct relatives - the Neanderthals and the Denisovans - there remain many unknowns regarding how differences in our genomes actually lead to differences in physical traits. "When we're looking at archaic genomes, we don't have all the layers and marks that we usually have in samples from present-day individuals that help us interpret regulation in the genome, like RNA or cell structure," said David Gokhman, a postdoctoral fellow in biology at Stanford University. "We just have the naked DNA sequence, and all we can really do is stare at it and hope one day we'd be able to understand what it means," he said. Motivated by such hopes, a team of researchers at Stanford and the University of California, San Francisco (UCSF), have devised a new method to harvest more information from the genomes of archaic humans to potentially reveal the physical consequences of genomic differences between us and them. Their work, published April 22 in eLife, focused on sequences related to gene expression - the process by which genes are activated or silenced, which determines when, how and where DNA's instructions are followed. Gene expression tends to be the genetic detail that determines physical differences between closely related groups. Starting with 14,042 genetic variants unique to modern humans, the researchers found 407 that specifically contribute to differences in gene expression between modern and archaic humans. In further analysis, they determined that the differences were more likely to be associated with the vocal tract and the cerebellum, which is the part of our brain that receives sensory information and controls voluntary movement, including walking, coordination, balance and speech. "It just seems so implausible that you could make a call like, 'I think the voice box evolved,' from the information we have," said Dmitri Petrov, the Michelle and Kevin Douglas Professor in the School of Humanities and Sciences, who is co-senior author of the paper with Gokhman and Nadav Ahituv, a professor of bioengineering at UCSF. "The predictions are almost science fiction. If five years ago, somebody told me that this would be possible, I would not have put much money on it."
The path to modern humans Essentially, the whole process imitates an abridged version of how each variant would play out in a cell in real life and reports the results. Lana Harshman, a graduate student at UCSF and co-lead author of the paper, infected three types of cells with the team's variant packages. These cells were related to the brain, skeleton and early development - subjects that are most likely to reveal evolutionary differences between us and our most recent ancestors. Carly Weiss, a postdoctoral scholar in the Petrov lab and co-lead author of the paper, analyzed the results of these experiments. In total, the researchers found 407 sequences that represented a change in expression in modern humans compared to our predecessors. Among that list, genes that affect the cerebellum and genes that affect the voice box, pharynx, larynx and vocal cords seem to be overrepresented. "This would suggest some kind of rapid evolution of those organs or some kind of a path that is specific to modern humans," said Gokhman. The next step, he added, would be trying to understand more about these sequences and the roles they played in the evolution of modern humans. Even with those unknowns, this technique by itself is a significant advance for evolutionary research, said Petrov. "This goes beyond the sequencing of the DNA from the Neanderthal and Denisovan bones. This begins to put meaning on those differences," said Petrov. "It's an important conceptual step from just the sequence - no tissue, no cells - to biological information and will enable many future studies."
Planet of the Cave People Jerusalem (SPX) Apr 28, 2021 Few sites in the world preserve a continuous archaeological record spanning millions of years. Wonderwerk Cave, located in South Africa's Kalahari Desert, is one of those rare sites. Meaning "miracle" in Afrikaans, Wonderwerk Cave has been identified as potentially the earliest cave occupation in the world and the site of some of the earliest indications of fire use and tool making among prehistoric humans. New research, published in Quaternary Science Reviews, led by a team of geologists and arch ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |