Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
'Activating' RNA takes DNA on a loop through time and space
by Staff Writers
Philadelphia PA (SPX) Feb 21, 2013


File image.

Long segments of RNA- encoded in our DNA but not translated into protein-are key to physically manipulating DNA in order to activate certain genes, say researchers at The Wistar Institute.

These non-coding RNA-activators (ncRNA-a) have a crucial role in turning genes on and off during early embryonic development, researchers say, and have also been connected with diseases, including some cancers, in adults.

In an online article of the journal Nature, a team of scientists led by Wistar's Ramin Shiekhattar, Ph.D., detail the mechanism by which long non-coding RNA-activators promote gene expression.

They show how these RNA molecules help proteins in the cell to create a loop of DNA in order to open up genes for transcription. Their experiments have also described how particular ncRNA-a molecules are related to FG syndrome, a genetic disease linked to severe neurological and physical deficits.

"These ncRNA-activators can activate specific genes by working with large protein complexes, filling in a big piece of the puzzle," said Shiekhattar, Herbert Kean, M.D., Family Professor and senior author of the study.

"Our DNA encodes thousands of these ncRNA-activators, each with a role in timing the expression of a specific gene. As we learn more about non-coding RNA, I believe we will have a profoundly better understanding of how our genes function."

Their findings also provide a plausible mechanism of how locations along chromosomes, classically known as "enhancer" elements, can influence the expression ("reading") of genes located 5,000 to 100,000 base pairs ("letters") of DNA away.

According to their findings, ncRNA-a molecules bind to large protein complexes to form a loop of DNA, which then opens up the gene to the molecular machinery that transcribes DNA. "There is an abundance of evidence to indicate that enhancers are critical components of transcription during embryonic development and disease process," Shiekhattar said.

"Non-coding RNAs are probably one of the earliest molecules that determine spatial and temporal gene expression in a developing embryo," Shiekhattar said. "These enhancers can help turn genes on and off as a growing embryo would need, but as we have seen in other genetic mechanisms of embryonic development, they can lead to cancer if they are switched on inappropriately in adult cells."

In the classic "central dogma" of biology, chromosomal DNA is transcribed into RNA, which is then translated by the cell into proteins. In recent years, however, scientists have found that not all transcribed RNA molecules become translated into proteins. In fact, studies have shown that large portions of the genome are transcribed into RNA that serve tasks other than functioning as blueprints for proteins.

In 2010, the Shiekhattar lab first published the discovery of these ncRNA enhancer molecules in the journal Cell (2010 Oct 1;143(1):46-58), and theorized on their role as "enhancers" of gene expression.

Since then, laboratories around the world have published and linked ncRNAs not only to transcriptional enhancers but also to certain diseases, including some cancers.

To discover how such enhancer-like RNAs function, the Shiekhatter laboratory deleted candidate molecules with known roles in activating gene expression, and assessed if they were related to RNA-dependent activation.

They found that depleting components of the protein complex known as Mediator specifically and potently diminished the ability of ncRNA-a to start the process of transcribing a gene into RNA.

Further, they found that these activating ncRNAs can attach to Mediator at multiple locations within the Mediator protein complex, and Mediator itself can interact with the enhancer element site on DNA that encodes these activating ncRNAs.

Their results also determined how mutations in a protein that makes up the Mediator complex, called MED12, drastically diminishes Mediator's ability to associate with activating ncRNAs.

Mutations in the MED12 protein are a marker for FG syndrome (also know as Opitz-Kaveggia syndrome), a rare genetic disorder that leads to abnormalities throughout the body and varying degrees of physical and neurological problems.

"This clearly shows how activating ncRNAs can influence disease development, an idea that has been gaining evidence in the scientific literature," Shiekhattar said.

To confirm that ncRNA-a works with Mediator to form a loop in DNA, the researchers used a technique called chromosome conformation capture (3C) to gain a better understanding of the three-dimensional structure of chromosomes. Their results show how Mediator gets a foothold of sorts on the portion of DNA that encodes the ncRNA-a, and twists the DNA to form a loop.

"The looping mechanism serves to physically bring together a distant enhancer element with the start site of the targeted gene, allowing Mediator to recruit the proteins responsible for reading the gene to the location," Shiekhattar said.

"It is at least one answer to how these classical enhancer elements function while being physically distant from their target genes."

The Shiekhattar laboratory is supported by grants from the National Institutes of Health (P30 CA 010815).

Wistar co-authors include Fan Lai, Ph.D., lead author, and Matteo Cesaroni, Ph.D., postdoctoral fellows in the Shiekhattar laboratory. Co-authors include Ulf Andersson Orom, Ph.D., Max Planck Institute for Molecular Genetics; Malte Beringer, Ph.D., Center de Regulacio Genomica, Barcelona; Dylan J. Taatjes, Ph.D., University of Colorado; and Gerd A. Blobel, M.D., Ph.D., The Children's Hospital of Philadelphia.

.


Related Links
The Wistar Institute
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
'Snooze button' on biological clocks improves cell adaptability
Nashville TN (SPX) Feb 21, 2013
The circadian clocks that control and influence dozens of basic biological processes have an unexpected "snooze button" that helps cells adapt to changes in their environment. A study by Vanderbilt University researchers published online by the journal Nature provides compelling new evidence that at least some species can alter the way that their biological clocks function by using differe ... read more


FLORA AND FAUNA
British PM sparks concern with aid budget proposals

Swiss Re posts 61% profit rise in 2012

Four guilty of manslaughter in Italy quake trial

Warning of emergency alert system hacks

FLORA AND FAUNA
Engineers show feasibility of superfast materials

Sony bills PS4 console as gaming's future

Lessons from nature could lead to the creation of new materials

'Explorers' to don Google Internet glasses

FLORA AND FAUNA
Study of world's richest marine area shows size matters

Indonesia announces shark, manta ray sanctuary

Quantifying Sediment From 2011 Flood Into Louisianas Wetlands

Japanese scientists hunt for groundwater

FLORA AND FAUNA
Extreme winters impact fish negatively

ArcticNet will help improve standard of living in Canada's north

Ice age extinction shaped Australian plant diversity

European sat data confirms UW numbers that Arctic is on thin ice

FLORA AND FAUNA
Malawi's bountiful harvests and healthier children

Food science expert: Genetically modified crops are overregulated

US Court tilts toward Monsanto in battle with farmer

Dustbin to dinner: ministers served binned food

FLORA AND FAUNA
Flood research shows human habits die hard

Indonesia floods, landslides kill 17

Mystery gold gifts for tsunami-wracked Japan port

Shimmering water reveals cold volcanic vent in Antarctic waters

FLORA AND FAUNA
Rising Islamist threat in West Africa

Life expectancy surges in AIDS-hit SAfrican region

ICoast, Guinea vow peaceful resolution to border dispute

South Sudan president retires over 100 army generals

FLORA AND FAUNA
Stay cool and live longer?

Zuckerberg, Brin join forces to extend life

Thick hair mutation emerged 30,000 years ago in humans

Tiny mutation had big evolutionary impact




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement