. Earth Science News .




.
EARLY EARTH
Ammonites found mini oases at ancient methane seeps
by Staff Writers
Washington DC (SPX) Apr 18, 2012

This image shows the variety of invertebrate fossils collected from the methane seep studied for this research. The scale bar applies to all except A, D, H and K. Credit: (AMNH\S. Thurston)

Research led by scientists at the American Museum of Natural History shows that ammonites-an extinct type of shelled mollusk that's closely related to modern-day nautiluses and squids-made homes in the unique environments surrounding methane seeps in the seaway that once covered America's Great Plains.

The findings, published online in the journal Geology, provide new insights into the mode of life and habitat of these ancient animals.

Geologic formations in parts of South Dakota, Wyoming, and Montana formed as sediments were deposited in the Western Interior Seaway-a broad expanse of water that split North America into two land masses-during the Late Cretaceous, 80 to 65 million years ago.

These formations are popular destinations for paleontologists looking for everything from fossilized dinosaur bones to ancient clam shells. In the last few years, groups of researchers have honed in on giant mounds of fossilized material in these areas where, many millions of years ago, methane-rich fluids migrated through the sediments onto the sea floor.

"We've found that these methane seeps are little oases on the sea floor, little self-perpetuating ecosystems," said Neil Landman, lead author of the Geology paper and a curator in the Division of Paleontology at the American Museum of Natural History.

"Thousands of these seeps have been found in the Western Interior Seaway, most containing a very rich fauna of bivalves, sponges, corals, fish, crinoids, and, as we've recently documented, ammonites."

In the Black Hills region of South Dakota, Landman and researchers from Stony Brook University's School of Marine and Atmospheric Science, the Black Hills Museum of Natural History, Brooklyn College, the South Dakota School of Mines and Technology, and the University of South Florida are investigating a 74-million-year-old seep with extremely well-preserved fossils.

"Most seeps have eroded significantly over the last 70 million years," Landman said. "But this seep is part of a cliff whose face recently slumped off. As the cliff fell away, it revealed beautiful, glistening shells of all sorts of marine life."

Studying these well-preserved shells, the researchers tried to determine the role of ammonites in the unique seep ecosystem. By analyzing the abundance of isotopes (alternative forms) of carbon, oxygen, and strontium, the group made a surprising discovery. The ammonites at the seep, once thought to be just passersby, had spent their whole lives there.

"Ammonites are generally considered mobile animals, freely coming and going" Landman said. "That's a characteristic that really distinguishes them from other mollusks that sit on the sea floor. But to my astonishment, our analysis showed that these ammonites, while mobile, seemed to have lived their whole life at a seep, forming an integral part of an interwoven community."

The seeps, which the researchers confirmed through oxygen isotope analysis to be "cold" (about 27 degrees Celsius, 80 degrees Fahrenheit), also likely attracted large clusters of plankton - the ammonites' preferred prey.

With these findings in mind, the researchers think that the methane seeps probably played a role in the evolution of ammonites and other faunal elements in the Western Interior Seaway.

The seeps might have formed small mounds that rose above the oxygen-poor sea floor, creating mini oases in a less-hospitable setting. This could be a reason why ammonites were able to inhabit the seaway over millions of years in spite of occasional environmental disturbances.

"If a nearby volcano erupted and ash covered part of the basin, it would have decimated ammonites in that area," Landman said. "But if these communities of seep ammonites survived, they could have repopulated the rest of the seaway. These habitats might have been semi-permanent, self-sustaining sites that acted as hedges against extinction."

Isotope analysis of strontium also revealed an interesting geologic finding: seep fluids coming into the seaway were in contact with granite, meaning that they traveled from deep in the Earth.

This suggests that the Black Hills, a small mountain range in the area, already were beginning to form in the Late Cretaceous, even though the uplift wasn't fully complete until many millions of years later.

Related Links
American Museum of Natural History
Explore The Early Earth at TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EARLY EARTH
First mass extinction linked to marine anoxia
Copenhagen DK (SPX) Apr 16, 2012
The end-Ordovician mass extinction, killing roughly 86% of all marine species, is now linked to nutrient-driven anoxia in the global ocean. This marine catastrophe has previously been attributed to a cooling event of a warm Earth, as a glacier can be seen to grow on the South Pole, and to increased oxygen in the ocean. The cooling appears to be real, but from a hot to less hot greenh ... read more


EARLY EARTH
Toxic gases hamper search at Pakistan avalanche site

New underwater images show damage at Fukushima

Quake-hit Christchurch to build cardboard cathedral

Indonesia warns runaway prisoners after quake chaos

EARLY EARTH
New Technique Helps Ensure Reliability of Microelectronic Devices, PV Cells and MEMS Applications

Topological Transitions In Metamaterials

Raytheon Delivers US Navy's First Dual-Frequency Sonar

More 'mini-iPad' rumors surface

EARLY EARTH
Ocean Acidification Linked With Larval Oyster Failure in Hatcheries

Paradise lost, Tonga mired in poverty

Under climate change, winners and losers on the coral reef

Don't assume the sand is safe

EARLY EARTH
CU-Boulder study shows Greenland may be slip-sliding away due to surface lake melt

No ice loss seen in major Himalayan glaciers: scientists

China seeking to expand role in Arctic

Penguins aplenty in Antarctica, satellite map shows

EARLY EARTH
Hunt on for rice to resist salt, flooding

Salt levels in fast food vary significantly between countries

Salk scientists discover how plants grow to escape shade

UC Research Reveals One of the Earliest Farming Sites in Europe

EARLY EARTH
7.0-magnitude quake hits off Papua New Guinea: USGS

S.Lanka fishermen accused of damaging tsunami buoy

Tokyo Sky Tree safe from quakes: operator

"Irene" removed from hurricane name list

EARLY EARTH
Diarra: launch of NASA scientist into Mali politics

G.Bissau army says coup bid over secret deal with Angola

ECOWAS council asks regional leaders to okay Mali force

Coup attempt in G.Bissau, attack on PM residence

EARLY EARTH
Excessive worrying may have co-evolved with intelligence

Fine-scale analysis of the human brain yields insight into its distinctive composition

Chinese-Brazilian superkid insists he's no 'genius'

Data mining opens the door to predictive neuroscience


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement