. | . |
Ancient fossilized brains of stanleycaris prompts rethink on evolution of insects by Staff Writers Toronto, Canada (SPX) Jul 14, 2022
ROM (Royal Ontario Museum) revealed new research based on a cache of fossils that contains the brain and nervous system of a half-billion-year-old marine predator from the Burgess Shale called Stanleycaris. Stanleycaris belonged to an ancient, extinct offshoot of the arthropod evolutionary tree called Radiodonta, distantly related to modern insects and spiders. These findings shed light on the evolution of the arthropod brain, vision, and head structure. The results were announced in the paper, "A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation", published in the journal Current Biology. It's what's inside Stanleycaris' head that has the researchers most excited. In 84 of the fossils, the remains of the brain and nerves are still preserved after 506 million years. "While fossilized brains from the Cambrian Period aren't new, this discovery stands out for the astonishing quality of preservation and the large number of specimens," said Joseph Moysiuk, lead author of the research and a University of Toronto (U of T) PhD Candidate in Ecology and Evolutionary Biology, based at the Royal Ontario Museum. "We can even make out fine details such as visual processing centers serving the large eyes and traces of nerves entering the appendages. The details are so clear it's as if we were looking at an animal that died yesterday". The new fossils show that the brain of Stanleycaris was composed of two segments, the protocerebrum and deutocerebrum, connected with the eyes and frontal claws, respectively. "We conclude that a two-segmented head and brain has deep roots in the arthropod lineage and that its evolution likely preceded the three-segmented brain that characterizes all living members of this diverse animal phylum," added Moysiuk. In present day arthropods like insects, the brain consists of protocerebrum, deutocerebrum, and tritocerebrum. "While the difference of a segment may not sound game-changing, it in fact has radical scientific implications. Since repeated copies of many arthropod organs can be found in their segmented bodies, figuring out how segments line up between different species is key to understanding how these structures diversified across the group. "These fossils are like a Rosetta Stone, helping to link traits in radiodonts and other early fossil arthropods with their counterparts in surviving groups." In addition to its pair of stalked eyes, Stanleycaris possessed a large central eye at the front of its head, a feature never before noticed in a radiodont. "The presence of a huge third eye in Stanleycaris was unexpected. It emphasizes that these animals were even more bizarre-looking than we thought, but also shows us that the earliest arthropods had already evolved a variety of complex visual systems like many of their modern kin" said Dr. Jean-Bernard Caron, ROM's Richard Ivey Curator of Invertebrate Palaeontology, and Moysiuk's PhD supervisor. "Since most radiodonts are only known from scattered bits and pieces, this discovery is a crucial jump forward in understanding what they looked like and how they lived," added Caron, who is also an Associate Professor at the U of T, in Ecology and Evolution and Earth Sciences. In the Cambrian Period, radiodonts included some of the biggest animals around, with the famous "weird wonder" Anomalocaris reaching up to at least 1 meter in length. At no more than 20 cm long, Stanleycaris was small for its group, but at a time when most animals grew no bigger than a human finger, it would have been an impressive predator. Stanleycaris' sophisticated sensory and nervous systems would have enabled it to efficiently pick out small prey in the gloom. With large compound eyes, a formidable-looking circular mouth lined with teeth, frontal claws with an impressive array of spines, and a flexible, segmented body with a series of swimming flaps along its sides, Stanleycaris would have been the stuff of nightmares for any small bottom dweller unfortunate enough to cross its path.
The Burgess Shale The Burgess Shale fossil sites are located within Yoho and Kootenay National Parks and are managed by Parks Canada. Parks Canada is proud to work with leading scientific researchers to expand knowledge and understanding of this key period of earth history and to share these sites with the world through award-winning guided hikes. The Burgess Shale was designated a UNESCO World Heritage Site in 1980 due to its outstanding universal value and is now part of the larger Canadian Rocky Mountain Parks World Heritage Site. Fossils of Stanleycaris can be seen by the public in the new Burgess Shale fossil display in the Willner Madge Gallery, Dawn of Life at ROM.
Research Report:A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation (stock illustration only)
How placentas evolved in mammals Buffalo NY (SPX) Jul 06, 2022 The fossil record tells us about ancient life through the preserved remains of body parts like bones, teeth and turtle shells. But how to study the history of soft tissues and organs, which can decay quickly, leaving little evidence behind? In a new study, scientists use gene expression patterns, called transcriptomics, to investigate the ancient origins of one organ: the placenta, which is vital to pregnancy. "In some mammals, like humans, the placenta is really invasive, so it invades all ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |