. | . |
Answering a longstanding question: Why is the surface of ice wet? by Staff Writers Sapporo, Japan (SPX) Nov 22, 2016
A team of Hokkaido University scientists has unraveled a 150-year-old mystery surrounding the surface melting of ice crystals in subzero environments by using an advanced optical microscope. "Ice is wet on its surface": Since this phenomenon, called surface melting, was mentioned by British scientist Michael Faraday more than 150 years ago, the question of why water on the surface of ice does not freeze in a subzero environment remained unanswered. In their search for the underlying mechanism behind surface melting, the team used a special optical microscope jointly developed with Olympus Corp. to observe how thin water layers, or quasi-liquid layers (QLLs), are born and disappear at various temperatures and vapor pressure levels. According to the researchers' findings, thin water layers do not homogeneously and completely wet the surface of ice--a discovery that runs contrary to conventional wisdom. QLLs, therefore, are not able to stably exist at equilibrium, and thus vaporize. Furthermore, the team discovered that QLLs form only when the surface of ice is growing or sublimating, under supersaturated or unsaturated vapor conditions. This finding strongly suggests that QLLs are a metastable transient state formed through vapor growth and sublimation of ice, but are absent at equilibrium. "Our results contradict the conventional understanding that supports QLL formation at equilibrium," says Ken-ichiro Murata, the study's lead author at Hokkaido University. "However, comparing the energy states between wet surfaces and dry surfaces, it is a corollary consequence that QLLs cannot be maintained at equilibrium. Surface melting plays important roles in various phenomena such as the lubrication on ice, formation of an ozone hole, and generation of electricity in thunderclouds, of which our findings may contribute towards the understanding." The research is likely to provide a universal framework for understanding surface melting on other crystalline surfaces, too.
Related Links Hokkaido University Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |