Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
Antennae Help Flies "Cruise" In Gusty Winds
by Jessica Stoller-Conrad
Pasadena CA (SPX) Apr 15, 2014


A tracing of the flies' flight trajectories as they explore in a wind tunnel, as seen from above. Each observation by the cameras is scaled according to flight speed, as if the animal was dribbling paint as it was flying; the longer the residence time, the larger the dot. Each trajectory is shown in a different color. The stars indicate when the flies were subjected to a brief gust of wind. These experiments revealed how the wind-sensing antennae stabilize the fly's visual flight controller. Image courtesy Sawyer Fuller/Caltech.

Due to its well-studied genome and small size, the humble fruit fly has been used as a model to study hundreds of human health issues ranging from Alzheimer's to obesity. However, Michael Dickinson, Esther M. and Abe M. Zarem Professor of Bioengineering at Caltech, is more interested in the flies themselves-and how such tiny insects are capable of something we humans can only dream of: autonomous flight.

In a report on a recent study that combined bursts of air, digital video cameras, and a variety of software and sensors, Dickinson and his team explain a mechanism for the insect's "cruise control" in flight-revealing a relationship between a fly's vision and its wind-sensing antennae.

Inspired by a previous experiment from the 1980s, Dickinson's former graduate student Sawyer Fuller (PhD '11) wanted to learn more about how fruit flies maintain their speed in flight.

"In the old study, the researchers simulated natural wind for flies in a wind tunnel and found that flies maintain the same groundspeed-even in a steady wind," Fuller says.

Because the previous experiment had only examined the flies' cruise control in gentle steady winds, Fuller decided to test the limits of the insect's abilities by delivering powerful blasts of air from an air piston in a wind tunnel. The brief gusts-which reached about half a meter per second and moved through the tunnel at the speed of sound-were meant to probe how the fly copes if the wind is rapidly changing.

The flies' response to this dynamic stimulus was then tracked automatically by a set of five digital video cameras that recorded the fly's position from five different perspectives. A host of computers then combined information from the cameras and instantly determined the fly's trajectory and acceleration.

To their surprise, the Caltech team found that the flies in their experiments, unlike those in the previous studies, accelerated when the wind was pushing them from behind and decelerated when flying into a headwind. In both cases the flies eventually recovered to maintain their original groundspeed, but the initial response was puzzling, Fuller says. "This response was basically the opposite of what the fly would need to do to maintain a consistent groundspeed in the wind," he says.

In the past, researchers assumed that flies-like humans and most other animals-used their vision to measure their speed in wind, accelerating and decelerating their flight based on the groundspeed their vision detected. But Fuller and his colleagues were also curious about the in-flight role of the fly's wind-sensing organs: the antennae.

Using the fly's initial response to strong wind gusts as a marker, the researchers tested the response of each sensory mode individually. To investigate the role of wind sensation on the fly's cruise control, they delivered strong gusts of wind to normal flies, as well as flies whose antennae had been removed.

The flies without antenna still increased their speed in the same direction as the wind gust, but they only accelerated about half as much as the flies whose antennae were still intact. In addition, the flies without antennae were unable to maintain a constant speed, dramatically alternating between acceleration and deceleration. Together, these results suggested that the antennae were indeed providing wind information that was important for speed regulation.

In order to test the response of the eyes separately from that of the antennae, Fuller and his colleagues projected an animation on the walls of the fly-tracking arena that would trick the eyes into thinking there was no speed increase, even though the antenna could feel the increased windspeed. When the researchers delivered strong headwinds to flies in this environment, the flies decelerated and were unable to recover to their original speed.

"We know that vision is important for flying insects, and we know that flies have one of the fastest visual systems on the planet," Dickinson says, "But this response showed us that as fast as their vision is, if they're flying too fast or the wind is blowing them around too quickly, their visual system reaches its limit and the world starts getting blurry." That is when the antennae kick in, he says.

The results suggest that the antennae are responsible for quickly sensing changes in windspeed-and therefore are responsible for the fly's initial deceleration in a headwind. The information received from the fly's eyes-which is processed much more slowly than information from the wind sensors on the antenna-is responsible for helping the fly regain its cruising speed.

"Sawyer's study showed that the fly can take another sensor-this little tiny antenna, which doesn't require nearly the amount of processing area within the brain as the eyes-and the fly is able to use that information to compensate for the fact that the information coming out of the eyes is a bit delayed," Dickinson says. "It's kind of a neat trick, using a cheap little sensor to compensate for the limitations of a big, heavy, expensive sensor."

Beyond learning more about the fly's wind-sensing capabilities, Fuller says that this information will also help engineers design small flying robots-creating a sort of man-made fly. "Tiny flying robots will take a lot of inspiration from flies. Like flies, they will probably have to rely heavily on vision to regulate groundspeed," he says.

"A challenge here is that vision typically takes a lot of computation to get right, just like in flies, but it's impossible to carry a powerful processor to do that quickly on a tiny robot. So they'll instead carry tiny cameras and do the visual processing on a tiny processor, but it will just take longer. Our results suggest that little flying vehicles would also do well to have fast wind sensors to compensate for this delay."

The work was published in a study titled "Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae." Other coauthors include former Caltech senior postdoc Andrew D. Straw, Martin Y. Peek (BS '06), and Richard Murray, Thomas E. and Doris Everhart Professor of Control and Dynamical Systems and Bioengineering at Caltech, who coadvised Fuller's graduate work. The study was supported by the Institute for Collaborative Biotechnologies through funding from the U.S. Army Research Office and by a National Science Foundation Graduate Fellowship.

.


Related Links
Caltech
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FLORA AND FAUNA
A new tiny species of crayfish from the swamps of coastal eastern Australia
London, UK (SPX) Apr 10, 2014
Hidden in one of Australia's most developed and fastest growing areas lives one of the world's smallest freshwater crayfish species. Robert B McCormack the Team Leader for the Australian Crayfish Project described the new species belonging to the genus Gramastacus, after 8 years of research in the swamps and creeks of coastal New South Wales, Australia. The study was published in the open access ... read more


FLORA AND FAUNA
Italian navy says nearly 900 migrants rescued

New towns going up in developing nations pose major risk to the poor

New signal detected in search for MH370 black boxes

Hunt for MH370 closes in on 'final resting place'

FLORA AND FAUNA
Vanguard Space Technologies Antenna Reflectors on Amazonas Satellite Launch

Headwall Extends Global Reach in Asia/Pac and Israel

A new twist for better steel

Dropbox out to be a home in the Internet 'cloud'

FLORA AND FAUNA
Longer catch-and-release time leaves largemouth bass nests more vulnerable to predators

Sunken logs create new worlds for seafloor animals

Coral reefs of the Mozambique Channel a leading candidate for saving marine diversity

Cyprus opens sewage plant in rare cross-communal effort

FLORA AND FAUNA
La Brea Tar Pit fossil research shows climate change drove evolution of Ice Age predators

Rare leafcutter bee fossils reveal Ice Age environment at the La Brea Tar Pits

Permafrost thawing could accelerate global warming

Finnish research improves the reliability of ice friction assessment

FLORA AND FAUNA
Chinese man covered with 460,000 bees for honey stunt

Climate: Farming emissions to rise 30% by 2050

Unity is strength in the marketing of smallholder farm produce

Tracking Sugar Movement in Plants

FLORA AND FAUNA
Increase in activity at DRC's Nyamulagira volcano

Magnitude 7.5 quake strikes off Solomon Islands: USGS

Cyclone warning lifted on Australia's Barrier Reef coast

Death toll rises to 23 in Solomons floods

FLORA AND FAUNA
US Marines headed to Chad park to fight poaching

Top Nigerian Islamic body accuses military over Muslim deaths

DR Congo rebel crackdown should not endanger hostages: charity

French forces move east in new phase of C. Africa operation

FLORA AND FAUNA
New method confirms humans and Neandertals interbred

Indigenous societies' 'first contact' typically brings collapse, but rebounds are possible

Technofossils are an unprecedented legacy left behind by humans

Scientists build 'designer' chromosome




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.