. Earth Science News .
EARLY EARTH
Arctic Rocks Offer New Glimpse Of Primitive Earth

Some of this deep material may have remained liquid despite the high pressures, and Carlson points out that seismological studies of the deep mantle reveal certain areas, one beneath the southern Pacific and another beneath Africa, that appear to be molten and possibly chemically different from the rest of the mantle.
by Staff Writers
Washington DC (SPX) Aug 19, 2010
Scientists have discovered a new window into the Earth's violent past. Geochemical evidence from volcanic rocks collected on Baffin Island in the Canadian Arctic suggests that beneath it lies a region of the Earth's mantle that has largely escaped the billions of years of melting and geological churning that has affected the rest of the planet.

Researchers believe the discovery offers clues to the early chemical evolution of the Earth.

The newly identified mantle "reservoir," as it is called, dates from just a few tens of million years after the Earth was first assembled from the collisions of smaller bodies. This reservoir likely represents the composition of the mantle shortly after formation of the core, but before the 4.5 billion years of crust formation and recycling modified the composition of most of the rest of Earth's interior.

"This was a key phase in the evolution of the Earth," says co-author Richard Carlson of the Carnegie Institution's Department of Terrestrial Magnetism. "It set the stage for everything that came after. Primitive mantle such as that we have identified would have been the ultimate source of all the magmas and all the different rock types we see on Earth today."

Carlson and lead author Matthew Jackson (a former Carnegie postdoctoral fellow, now at Boston University), with colleagues, using samples collected by coauthor Don Francis of McGill University, targeted the Baffin Island rocks, which are the earliest expression of the mantle hotspot now feeding volcanic eruptions on Iceland, because previous study of helium isotopes in these rocks showed them to have anomalously high ratios of helium-3 to helium-4.

Helium-3 is generally extremely rare within the Earth; most of the mantle's supply has been outgassed by volcanic eruptions and lost to space over the planet's long geological history. In contrast, helium-4 has been constantly replenished within the Earth by the decay of radioactive uranium and thorium.

The high proportion of helium-3 suggests that the Baffin Island lavas came from a reservoir in the mantle that had never previously outgassed its original helium-3, implying that it had not been subjected to the extensive chemical differentiation experienced by most of the mantle.

The researchers confirmed this conclusion by analyzing the lead isotopes in the lava samples, which date the reservoir to between 4.55 and 4.45 billion years old. This age is only slightly younger than the Earth itself.

The early age of the mantle reservoir implies that it existed before melting of the mantle began to create the magmas that rose to form Earth's crust and before plate tectonics allowed that crust to be mixed back into the mantle.

Many researchers have assumed that before continental crust formed the mantle's chemistry was similar to that of meteorites called chondrites, but that the formation of continents altered its chemistry, causing it to become depleted in the elements, called incompatible elements, that are extracted with the magma when melting occurs in the mantle.

"Our results question this assumption," says Carlson. "They suggest that before continent extraction, the mantle already was depleted in incompatible elements compared to chondrites, perhaps because of an even earlier Earth differentiation event, or perhaps because the Earth originally formed from building blocks depleted in these elements."

Of the two possibilities, Carlson favors the early differentiation model, which would involve a global magma ocean on the newly-formed Earth. This magma ocean produced a crust that predated the crust that exists today.

"In our model, the original crust that formed by the solidification of the magma ocean was buoyantly unstable at Earth's surface because it was rich in iron," he says. "This instability caused it to sink to the base of the mantle, taking the incompatible elements with it, where it remains today."

Some of this deep material may have remained liquid despite the high pressures, and Carlson points out that seismological studies of the deep mantle reveal certain areas, one beneath the southern Pacific and another beneath Africa, that appear to be molten and possibly chemically different from the rest of the mantle.

"I'm holding out hope that these seismically imaged areas might be the compositional complement to the "depleted" primitive mantle that we sample in the Baffin Island lavas," he says.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Carnegie Institution
Explore The Early Earth at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


EARLY EARTH
An Ancient Earth Like Ours
Leicester, UK (SPX) Aug 13, 2010
An international team of scientists including Mark Williams and Jan Zalasiewicz of the Geology Department of the University of Leicester, and led by Dr. Thijs Vandenbroucke, formerly of Leicester and now at the University of Lille 1 (France), has reconstructed the Earth's climate belts of the late Ordovician Period, between 460 and 445 million years ago. The findings have been published on ... read more







EARLY EARTH
UN to meet on Pakistan aid, 4.6 million without shelter

'Terrorists' cannot be allowed to exploit floods: Pakistan

Aid begins to flow to flood-ravaged Pakistan

Aid response to Pakistan floods inadequate

EARLY EARTH
"Fahrenheit 451" author burns at idea of digital books

Safer Plastics That Lock In Potentially Harmful Plasticizers

Power Problem With Insat-4B

Colorado Space Grant Consortium And LockMart To Develop CubeSat

EARLY EARTH
Great Barrier Reef had predecessor

Massive Coral Mortality Following Bleaching In Indonesia

Slowing Urban Sprawl, Adding Forests Curb Floods And Help Rivers

How Algae 'Enslavement' Threatens Freshwater Bodies

EARLY EARTH
Resolving The Paradox Of The Antarctic Sea Ice

Indonesian Ice Field May Be Gone In A Matter Of Years

Puzzle of Antarctic ice solved?

Giant Greenland iceberg a climate 'warning sign'

EARLY EARTH
Greenhouse Gas Calculator Connects Farming Practices With Carbon Credits

Russian food prices jump amid heatwave: official

Germans To Help With New Food Zapping Process

Arsenic In Field Runoff Linked To Poultry Litter

EARLY EARTH
Latest China mudslides leave 14 dead, dozens missing

More than 60 missing in latest China mudslides

GRIP 'Shakedown' Flight Planned Over Gulf Coast

More than 60 missing in latest China mudslides

EARLY EARTH
Congolese army says two arrested over Indian UN slayings

Guinea-Bissau "ashamed" of incompetent image: president

Nigerian electric rates prompt review

Chinese-Rwandan military ties deepen

EARLY EARTH
Growing Up Without Sibs Doesn't Hurt Social Skills

Oldest Evidence Of Stone Tool Use And Meat-Eating Among Human Ancestors

The Worst Impact Of Climate Change May Be How Humanity Reacts To It

Stone tools used by earliest 'butchers'


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement