. | . |
Artificial intelligence accurately predicts distribution of radioactive fallout by Staff Writers Tokyo, Japan (SPX) Jul 03, 2018
When a nuclear power plant accident occurs and radioactive material is released, it is vital to evacuate people in the vicinity as quickly as possible. However, it can be difficult to immediately predict where the emitted radioactivity will settle, making it impossible to prevent the exposure of large numbers of people. A means of overcoming this difficulty has been presented in a new study reported in the journal Scientific Reports by a research team at The University of Tokyo Institute of Industrial Science. The team has created a computer program that can accurately predict where radioactive material that has been emitted will eventually land, over 30 hours in advance, using weather forecasts on the expected wind patterns. This tool enables evacuation plans and other health-protective measures to be implemented if another nuclear accident like in 2011 at the Fukushima Daiichi Nuclear Power Plant were to occur. This latest study was prompted by the limitations of existing atmospheric modeling tools in the aftermath of the accident at Fukushima; tools considered so unreliable that they were not used for planning immediately after the disaster. In this context, the team created a system based on a form of artificial intelligence called machine learning, which can use data on previous weather patterns to predict the route that radioactive emissions are likely to take. "Our new tool was first trained using years of weather-related data to predict where radioactivity would be distributed if it were released from a particular point," lead author Takao Yoshikane says. "In subsequent testing, it could predict the direction of dispersion with at least 85% accuracy, with this rising to 95% in winter when there are more predictable weather patterns." "The fact that the accuracy of this approach did not decrease when predicting over 30 hours into the future is extremely important in disaster scenarios," Takao Yoshikane says. "This gives authorities time to arrange evacuation plans in the most badly affected areas, and to issue guidance to people in specific areas about avoiding eating fresh produce and taking potassium iodide, which can limit the absorption of ingested radioactive isotopes by the body."
Research Report: "Dispersion characteristics of radioactive materials estimated by wind patterns"
Ukraine says Chernobyl remains an 'open wound' 32 years on Kiev (AFP) April 26, 2018 Ukraine on Thursday marked 32 years since Chernobyl, the world's worst nuclear disaster, saying it would "remain an open wound in the hearts of millions." The accident spread radioactive fallout across Europe in 1986, particularly contaminating Ukraine, Russia and Belarus. "Chernobyl will always remain an open wound in the heart of our country, in the hearts of millions of people," President Petro Poroshenko wrote on Facebook. Several hundred people gathered overnight for a ceremony at a mem ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |