. Earth Science News .
SHAKE AND BLOW
Aviation and volcanic ash
by Staff Writers
Munich, Germany (SPX) Mar 22, 2016


File image.

Volcanic ash can damage jet engines, and Ludwig-Maximilians-Universitaet (LMU) in Munich volcanologists have developed a new empirical model for assessment of the risk. Their results show that tests using sand do not reflect the behavior of ash in this context.

Volcanic ash is hazardous to commercial aircraft because, when drawn into jet engines, it can severely damage the turbines as well as compromising the operation of other components. For this reason, the eruption of the volcano Eyjafjallajokull in Iceland in 2010 led to widespread disruption of air traffic over Europe and resulted in considerable economic losses.

"Damage to the engines is primarily attributable to the deposition of melted ash on the vanes of the turbines," says Professor Donald Dingwell, Director of the Department of Earth and Environmental Sciences at LMU.

"And one of the grounds for the extensive closure of airspace in 2010 was that nothing was known about the melting behavior of volcanic ash under the conditions found inside jet engines." He and his research group have now investigated the issue, and shown that the chemical composition of the ash, which varies depending on its source, plays a crucial role in determining how much damage it can cause.

Furthermore, the new study shows that the standard tests, which use sand or dust particles as proxies, do not reproduce the effects of volcanic ash on jet engines. On the basis of these results, the LMU team has developed a model which enables them to provide more realistic estimates of the risk to aviation posed by volcanic ash. Their findings appear online in the journal Nature Communications.

Temperatures in working jet engines range between 1200 C and 2000 C. Under such conditions, volcanic ash particles melt and the molten material is deposited on the hot surfaces of the turbines.

This in turn can lead to clogging of fuel nozzles, cooling ducts and other engine parts. In addition, ash particles may penetrate the protective ceramic coatings on the turbines, compromising their performance as thermal barriers and exacerbating damage.

"The only available data concerning the effects of airborne particles on turbines come from outdated tests based on the use of sand," Dingwell points out. "However, in terms of its chemical composition, volcanic ash differs significantly from sand. Furthermore, ash varies widely in composition depending on which volcano it comes from.

Ash melts at lower temperatures than sand
The LMU researchers have therefore performed the first systematic analysis of the melting behavior of volcanic ash obtained from a variety of sources.

They heated samples of ash from nine different volcanos at various rates up to a maximum temperature of 1650C, thus simulating the range of temperatures found at different locations within commercial jet engines. Melting temperatures were found to depend strongly on the chemical composition of the ash: The higher the fraction of basic oxides in the sample, the lower the melting temperature.

"With the aid of our data, we were able to develop an empirical model, which describes how the melting behavior of volcanic ash as a function of its chemical composition and the rate at which it is heated," Dingwell explains.

"We also confirmed earlier reports that ash generally melts at significantly lower temperatures than dust particles or sand - and consequently will be deposited at much higher rates on hot engine parts."

He and his colleagues are therefore convinced that tests based on the use of sand are unsuitable for assessing the effects of volcanic ash on turbines, because they severely underestimate the degree of damage that the latter particulates can cause.

"With this model, we provide the basis for more accurate estimation of the effects of the deposition of volcanic ash in turbine engines," says Dingwell.

The researchers now plan to broaden their database in order to extend the applicability of the model. They also intend to explore how jet engines can be rendered less susceptible to damage by volcanic ash - by developing deposition-resistant coatings for component surfaces.

Research paper: "Volcanic ash melting under conditions relevant to ash turbine interactions"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ludwig-Maximilians-Universitat Munchen
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SHAKE AND BLOW
How rivers of hot ash and gas move when a supervolcano erupts
Buffalo NY (SPX) Mar 08, 2016
Supervolcanoes capable of unleashing hundreds of times the amount of magma that was expelled during the Mount St. Helens eruption of 1980 are found in populated areas around the world, including the western United States. A new study is providing insight into what may happen when one of these colossal entities explodes. The research focuses on the Silver Creek caldera, which sits at the in ... read more


SHAKE AND BLOW
Iraq screening 20,000 to stop IS infiltrators: army

Study explains why an increase in probability feels riskier

US Democrats end marathon gun control sit-in

4,500 migrants rescued in wave of Med crossings

SHAKE AND BLOW
Scientists consider building cities of the future out of bone

Quantum calculations broaden the understanding of crystal catalysts

10,000 windows onto biomolecular information processing

SSL-Built Satellite For Indonesian Bank Is Performing Post-Launch Maneuvers According To Plan

SHAKE AND BLOW
Ocean forecast offers seasonal outlook for Pacific Northwest waters

New study highlights hidden values of open ocean

Rains or not, India faces drinking water crisis

Blame flows freely as West Bank taps run dry

SHAKE AND BLOW
Siberian larch forests are still linked to the ice age

Ancient DNA shows perfect storm felled Ice Age giants

Permafrost thawing below shallow Arctic lakes

Huge ancient river basin explains location of the world's fastest flowing glacier

SHAKE AND BLOW
U of T Mississauga professor discovers new origins for farmed rice

Better soil data key for future food security

How squash agriculture spread bees in pre-Columbian North America

Crop breeding is not keeping pace with climate change

SHAKE AND BLOW
Aviation and volcanic ash

West Virginia disaster declared as US flood toll hits 24

23 dead in West Virginia floods

Active volcanoes get quiet before they erupt

SHAKE AND BLOW
Why are UN forces returning control of security to Liberia?

Seven Niger gendarmes killed in refugee camp attack

Nigerians look east to China for business, opportunity

UN mulls Mali mission as body count mounts

SHAKE AND BLOW
Monkeys get more selective as they get older

To retain newly learned info, exercise four hours later

Student research settles 'superpower showdown'

The primate brain is 'pre-adapted' to face potentially any situation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.