. Earth Science News .




.
EARLY EARTH
Biologists replicate key evolutionary step
by Staff Writers
Minneapolis MI (SPX) Jan 18, 2012

File image: yeast cells.

More than 500 million years ago, single-celled organisms on the Earth's surface began forming multicellular clusters that ultimately became plants and animals. Just how that happened is a question that has eluded evolutionary biologists.

But scientists in the University of Minnesota's College of Biological Sciences have replicated that key step in the laboratory using natural selection and common brewer's yeast, which are single-celled organisms. The yeast "evolved" into multicellular clusters that work together cooperatively, reproduce and adapt to their environment - in essence, precursors to life on Earth as it is today.

Their achievement is published in the January 16 issue of Proceedings of the National Academy of Sciences.

It all started about two years ago with a casual comment over coffee that bridging the famous multi-cellularity gap would be "just about the coolest thing we could do," recall postdoctoral researcher Will Ratcliff and associate professor Michael Travisano, both from the Department of Ecology, Evolution and Behavior.

So they decided to give it a try. Then came the big surprise. It wasn't actually that difficult. Using yeast cells, culture media and a centrifuge, it only took them one experiment conducted over about 60 days, says Travisano, who is senior author on the PNAS paper.

"I don't think anyone had ever tried it before," says lead author Ratcliff. "There aren't many scientists doing experimental evolution, and they're trying to answer questions about evolution, not recreate it."

Despite their modesty, the achievement has earned praise and admiration from evolutionary biologists around the world.

"To understand why the world is full of plants and animals, including humans, we need to know how one-celled organisms made the switch to living as a group, as multicelled organisms," said Sam Scheiner, program director in the National Science Foundation (NSF)'s Division of Environmental Biology.

"This study is the first to experimentally observe that transition, providing a look at an event that took place hundreds of millions of years ago."

Funding for the research was obtained in February 2011, with coauthors R. Ford Denison and Mark Borrello, adjunct and associate professors, respectively, in the Department of Ecology, Evolution and Behavior.

Ratcliff and Travisano gave the scientific community a glimpse of their discovery at a conference last summer and have subsequently been invited to talk about it at other meetings. The PNAS article represents the first time full details about the research have been disclosed. "The article provides us with the first opportunity to show the breadth of evolutionary change that we've observed," Travisano says.

In essence, here's how the experiments worked. The two chose brewer's yeast or Saccharomyces cerevisiae, a species of yeast used since ancient times to make bread and beer, because it is abundant in nature and grows easily. They added it to a nutrient-rich culture media and allowed the cells to grow for a day in test tubes.

Then they used a centrifuge to stratify the contents by weight. As the mixture settled, cell clusters landed on the bottom of the tubes faster because they are heavier. They removed the clusters, transferred them to fresh media, and grew them up again. Sixty cycles later, the clusters - now hundreds of cells - looked roughly like spherical snowflakes.

Analysis showed that the clusters were not just groups of random cells that adhered to each other, but related cells that remained attached following cell division. That was significant because it meant they were genetically similar, which promotes cooperation. When the clusters reached a critical size, some cells essentially committed suicide (apoptosis) to allow offspring to separate. The offspring reproduced only after they attained the size of their parents.

"A cluster alone isn't multiellular," Ratcliff said. "But when cells in a cluster cooperate, make sacrifices for the common good, and adapt to change, that's an evolutionary transition to multicellularity."

In order for multicellular organisms to form, most cells need to sacrifice their ability to reproduce, an altruistic action that favors the whole but not the individual, Ratcliff said.

For example, all cells in the human body are essentially a support system that allows sperm and eggs to pass DNA along to the next generation. Thus, multicellularity is by its nature extremely cooperative. "Some of the best competitors in nature are those that engage in cooperation, and our experiment bears that out," said Travisano.

Evolutionary biologists have estimated that multicellularity evolved independently in about 25 groups. Travisano and Ratcliff wonder why it didn't evolve more often in nature, since it's not that difficult to recreate it in a lab. Considering that trillions of one-celled organisms lived on the Earth for millions of years, it seems as if it should have, Ratcliff said.

Maybe that's a question they will answer in the future, using the fossil record for thousands of generations of their multicellular clusters, which is stored in a freezer in Travisano's lab. Since the frozen samples contain multiple lines that independently became multicellular, they can compare them to learn if similar or different mechanisms and genes were responsible in each case, Travisano said.

The research duo's next steps will be to look at the role of multicellularity in cancer, aging and other critical areas of biology.

"Our multicellular yeast are a valuable resource for investigating a wide variety of medically and biologically important topics," Travisano said. "Cancer was recently described as a fossil from the origin of multicellularity, which can be directly investigated with the yeast system. Similarly the origins of aging, development, and the evolution of complex morphologies are open to direct experimental investigation that would otherwise be difficult or impossible."

Travisano joined the College of Biological Sciences faculty in 2007. The multicellularity discovery adds to his record of "firsts" in experimental evolution over the past 25 years. Before joining the Travisano lab group, Ratcliff earned his Ph.D. at the College of Biological Sciences, with Denison as his adviser. Ratcliff has become something of a rock star on the academic conference circuit, and he won the W.D. Hamilton Award for best student presentation at Evolution 2011, the premier conference for evolutionary biologists.

Related Links
University of Minnesota
Explore The Early Earth at TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EARLY EARTH
New insights into an ancient mechanism of mammalian evolution
London, UK (SPX) Jan 16, 2012
A team of geneticists and computational biologists in the UK have revealed how an ancient mechanism is involved in gene control and continues to drive genome evolution. The new study is published in the journal Cell. To function properly, mammalian tissues require the protein CTCF, which has several key activities including the regulation of genes and interaction with proteins in the cell' ... read more


EARLY EARTH
Disasters cost $366 billion in 2011: UN

Simulating firefighting operations on a PC

UN aid appeal for Philippine floods falls short

Japan disaster builds international bridges

EARLY EARTH
Neutron scattering provides window into surface interactions

Lynas rare earth facility awaits approval

Space station to dodge superfast debris

Building the smallest magnetic data storage unit

EARLY EARTH
UAE to host global water conference next year

Shangri-La joins fight against shark fin soup

Chile sees trouble ahead in energy output

'Ocean giants' ban needed on Italy coasts: environmentalists

EARLY EARTH
Engineering team completes ambitious Antarctic expedition in the 'deep-field'

Eyeing resources, India, China, Brazil, Japan, other countries want a voice on Arctic Council

Denmark names first Arctic envoy

Russian ship to pump fuel to ice-bound Alaska port

EARLY EARTH
Ancient popcorn discovered in Peru

Solutions for a nitrogen-soaked world

Not On My Planet: How far is far enough

UF researchers discover 'green' pesticide effective against citrus pests

EARLY EARTH
British scientific expedition discovers world's deepest known undersea volcanic vents

Strong quakes rattle remote Antarctica

World's most extreme deep-sea vents revealed

Death toll in Brazil floods, landslide rises to 33

EARLY EARTH
Ethiopia: Thousands driven out in land grab

Sudan rebels say key govt outpost taken

S.African rangers kill poachers in Kruger park

S. Africa slams Security Council over Libya crisis

EARLY EARTH
Sitting pretty: bum's the word in Japan security

How the brain computes 3-dimensional structure

We May Be Less Happy, But Our Language Isn't

Canada urged to conceal fetal sex over abortion fears


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement