. Earth Science News .
WATER WORLD
Can seagrass help fight ocean acidification?
by Staff Writers
Washington DC (SPX) Aug 01, 2018

A seagrass forest off the coast of Oregon

Seagrass meadows could play a limited, localized role in alleviating ocean acidification in coastal ecosystems, according to new work led by Carnegie's David Koweek and including Carnegie's Ken Caldeira and published in Ecological Applications.

When coal, oil, or gas is burned, the resulting carbon dioxide is released into the atmosphere where it is the driving force behind global climate change. But this atmospheric carbon dioxide is also absorbed into the ocean where chemical reactions with the seawater produce carbonic acid, which is corrosive to marine life, particularly to organisms like mussels and oysters that construct their shells and exoskeletons out of calcium carbonate.

Seagrasses provide an important source of food and shelter for marine animals, help fight erosion of the sediments that form the sea bed, and filter bacterial pathogens from the water. They also take up carbon dioxide as part of their daytime photosynthetic activity.

Research has already demonstrated that the estuaries and bays of California's coastline are experiencing ocean acidification. So, the team set out to test the theory that carbon dioxide uptake by seagrass meadows could buffer the pH of the ocean water in their immediate surroundings and help to fight off the effects of acidification in the short term.

They combined data from seagrass meadows in Tomales Bay, an inlet of the Pacific Ocean in California's Marin County, with sophisticated modeling tools that accounted for a variety of factors including, the amount of seagrass within the meadow, seasonal variation in photosynthetic activity and nighttime respiration, water depth, and tidal currents.

"Local stakeholders, such as California's shellfish industry, want to know whether seagrass meadows may help to counteract ocean acidification," Koweek said. "Our results suggest that seagrass meadows along the California coast will likely offer only limited ability to counteract ocean acidification over long periods of time."

On average, the computer simulations predicted that the seagrass meadows would turn back the clock on ocean acidification a few decades, a small offset to the more than 150 years of acidification - a process that is now happening more quickly than ever with increasing fossil fuel emissions.

However, there were small time windows where their models show that seagrass meadows were able to offer much greater buffering. These occurred during periods when low tides occurred during the daytime when photosynthesis occurs. Koweek and Caldeira say that these offer important opportunities.

This level of buffering could make an impact in aquaculture endeavors or even in natural shellfish communities where marine organisms are able to align their calcification activity with the seagrass buffering periods.

"We are starting to understand that some marine organisms, such as blue mussels, are actually able to shift the time of day in which they do most of their calcification. If other organisms are able to do the same, then even brief windows of significant ocean acidification buffering by seagrass meadows may bring substantial benefits to the organisms that live in them", Koweek said.

Koweek and Caldeira are grounded in their optimism for solutions to stop ocean acidification around the world.

"Of course, the only way to truly fight ocean acidification is to rapidly and permanently reduce the rate at which we are spewing carbon dioxide emissions into the sky," Caldeira noted.

"However," added Koweek, "seagrass meadows are a critical part of California's coastline. Although our results indicate that seagrass meadows along the California coast are not likely to offer long-term buffering to fight ocean acidification, their enduring role as habitat for marine organisms, protectors against sea level rise, and magnets of biodiversity should be more than enough reason to restore and protect these iconic ecosystems."

Research paper


Related Links
Carnegie Institution for Science
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Ocean acidification is disrupting marine ecosystems, study shows
Washington (UPI) Jul 27, 2018
Ocean acidification is already significantly altering marine ecosystems, and if CO2 concentrations continue to rise, the effects of ocean acidity could be even more profound. By studying the impacts of volcanic CO2 seeps off the coast of Japan, scientists have gained a better understanding of how increasing CO2 concentrations are likely to reshape marine ecosystems. "These CO2 seeps provide a vital window into the future," Sylvain Agostini, researcher at the University of Tsukuba Shimoda ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
That's cold: Japan tech blasts snoozing workers with AC

Two jailed for rigging Hong Kong-China bridge tests

Empathetic, calm dogs try to rescue owners in distress, study finds

Developing Microrobotics for Disaster Recovery and High-Risk Environments

WATER WORLD
Intense conditions turn nitrogen metallic

Made-to-measure silicon building blocks

Root vegetables to help make new buildings stronger, greener

Manipulating single atoms with an electron beam

WATER WORLD
The last wild ocean

The blueprint for El Nino diversity

First mapping of global marine wilderness shows just how little remains

Thick mud hampers Laos dam rescue with hundreds still unaccounted for

WATER WORLD
Deglacial changes in western Atlantic Ocean circulation

Glaciers in East Antarctica also 'imperiled' by climate change

World's biggest king penguin colony shrinks 90 percent

Great Barrier Reef reveals rapid changes of ancient glaciers

WATER WORLD
To keep more carbon on the ground, halting farmland expansion is key

Record drought grips Germany's breadbasket

Wildfires, drought hit Sweden's Sami reindeer herders

Murkowksi: Tariffs hurt more than just agriculture

WATER WORLD
Powerful storm hits disaster-ravaged Japan

Yellowstone super-volcano has a different history than previously thought

Nearly 120,000 displaced in Myanmar floods

Strong quake kills 14, injures scores, on Indonesia holiday island

WATER WORLD
Uganda jails 35 Congolese for illegal fishing

China to invest $14 bn in S.Africa

China opens embassy after Burkina switches from Taiwan

Three Ugandan soldiers lynched by angry crowd: police

WATER WORLD
Two baby mountain gorillas born in DR Congo's Virunga park

Gault site research pushes back date of earliest North Americans

Last survivor of Brazil tribe under threat: NGO

More than a quarter of the globe is controlled by indigenous groups









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.