Earth Science News
CARBON WORLDS
Catalytic combo converts CO2 to solid carbon nanofibers
High-resolution transmission electron microscopy (TEM) shows the tip of the resulting carbon nanofiber (left) on the iron-cobalt/cerium oxide (FeCo/CeO2) thermocatalyst. Scientists mapped the structure and chemical composition of newly formed carbon nanofibers (right) using scanning transmission electron microscopy (STEM), high-angle annular dark field (HAADF) imaging, and energy-dispersive x-ray spectroscopy (EDS) (scale bar represents 8 nanometers). The images show that the nanofibers are made of carbon (C), and reveal that the catalytic metals, iron (Fe) and cobalt (Co), are pushed away from the catalytic surface and accumulate at the tip of the nanofiber.
Catalytic combo converts CO2 to solid carbon nanofibers
by Staff Writers for BNL News
Upton NY (SPX) Jan 12, 2024

Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

"You can put the carbon nanofibers into cement to strengthen the cement," said Jingguang Chen, a professor of chemical engineering at Columbia with a joint appointment at Brookhaven Lab who led the research. "That would lock the carbon away in concrete for at least 50 years, potentially longer. By then, the world should be shifted to primarily renewable energy sources that don't emit carbon."

As a bonus, the process also produces hydrogen gas (H2), a promising alternative fuel that, when used, creates zero emissions.

Capturing or converting carbon
The idea of capturing CO2 or converting it to other materials to combat climate change is not new. But simply storing CO2 gas can lead to leaks. And many CO2 conversions produce carbon-based chemicals or fuels that are used right away, which releases CO2 right back into the atmosphere.

"The novelty of this work is that we are trying to convert CO2 into something that is value-added but in a solid, useful form," Chen said.

Such solid carbon materials-including carbon nanotubes and nanofibers with dimensions measuring billionths of a meter-have many appealing properties, including strength and thermal and electrical conductivity. But it's no simple matter to extract carbon from carbon dioxide and get it to assemble into these fine-scale structures. One direct, heat-driven process requires temperatures in excess of 1,000 degrees Celsius.

"It's very unrealistic for large-scale CO2 mitigation," Chen said. "In contrast, we found a process that can occur at about 400 degrees Celsius, which is a much more practical, industrially achievable temperature."

The tandem two-step
The trick was to break the reaction into stages and to use two different types of catalysts-materials that make it easier for molecules to come together and react.

"If you decouple the reaction into several sub-reaction steps you can consider using different kinds of energy input and catalysts to make each part of the reaction work," said Brookhaven Lab and Columbia research scientist Zhenhua Xie, lead author on the paper.

The scientists started by realizing that carbon monoxide (CO) is a much better starting material than CO2 for making carbon nanofibers (CNF). Then they backtracked to find the most efficient way to generate CO from CO2.

Earlier work from their group steered them to use a commercially available electrocatalyst made of palladium supported on carbon. Electrocatalysts drive chemical reactions using an electric current. In the presence of flowing electrons and protons, the catalyst splits both CO2 and water (H2O) into CO and H2.

For the second step, the scientists turned to a heat-activated thermocatalyst made of an iron-cobalt alloy. It operates at temperatures around 400 degrees Celsius, significantly milder than a direct CO2-to-CNF conversion would require. They also discovered that adding a bit of extra metallic cobalt greatly enhances the formation of the carbon nanofibers.

"By coupling electrocatalysis and thermocatalysis, we are using this tandem process to achieve things that cannot be achieved by either process alone," Chen said.

Catalyst characterization
To discover the details of how these catalysts operate, the scientists conducted a wide range of experiments. These included computational modeling studies, physical and chemical characterization studies at Brookhaven Lab's National Synchrotron Light Source II (NSLS-II)-using the Quick X-ray Absorption and Scattering (QAS) and Inner-Shell Spectroscopy (ISS) beamlines-and microscopic imaging at the Electron Microscopy facility at the Lab's Center for Functional Nanomaterials (CFN).

On the modeling front, the scientists used "density functional theory" (DFT) calculations to analyze the atomic arrangements and other characteristics of the catalysts when interacting with the active chemical environment.

"We are looking at the structures to determine what are the stable phases of the catalyst under reaction conditions," explained study co-author Ping Liu of Brookhaven's Chemistry Division who led these calculations. "We are looking at active sites and how these sites are bonding with the reaction intermediates. By determining the barriers, or transition states, from one step to another, we learn exactly how the catalyst is functioning during the reaction."

X-ray diffraction and x-ray absorption experiments at NSLS-II tracked how the catalysts change physically and chemically during the reactions. For example, synchrotron x-rays revealed how the presence of electric current transforms metallic palladium in the catalyst into palladium hydride, a metal that is key to producing both H2 and CO in the first reaction stage.

For the second stage, "We wanted to know what's the structure of the iron-cobalt system under reaction conditions and how to optimize the iron-cobalt catalyst," Xie said. The x-ray experiments confirmed that both an alloy of iron and cobalt plus some extra metallic cobalt are present and needed to convert CO to carbon nanofibers.

"The two work together sequentially," said Liu, whose DFT calculations helped explain the process.

"According to our study, the cobalt-iron sites in the alloy help to break the C-O bonds of carbon monoxide. That makes atomic carbon available to serve as the source for building carbon nanofibers. Then the extra cobalt is there to facilitate the formation of the C-C bonds that link up the carbon atoms," she explained.

Recycle-ready, carbon-negative
"Transmission electron microscopy (TEM) analysis conducted at CFN revealed the morphologies, crystal structures, and elemental distributions within the carbon nanofibers both with and without catalysts," said CFN scientist and study co-author Sooyeon Hwang.

The images show that, as the carbon nanofibers grow, the catalyst gets pushed up and away from the surface. That makes it easy to recycle the catalytic metal, Chen said.

"We use acid to leach the metal out without destroying the carbon nanofiber so we can concentrate the metals and recycle them to be used as a catalyst again," he said.

This ease of catalyst recycling, commercial availability of the catalysts, and relatively mild reaction conditions for the second reaction all contribute to a favorable assessment of the energy and other costs associated with the process, the researchers said.

"For practical applications, both are really important-the CO2 footprint analysis and the recyclability of the catalyst," said Chen. "Our technical results and these other analyses show that this tandem strategy opens a door for decarbonizing CO2 into valuable solid carbon products while producing renewable H2."

If these processes are driven by renewable energy, the results would be truly carbon-negative, opening new opportunities for CO2 mitigation.

Research Report:CO2 fixation into carbon nanofibres using electrochemical-thermochemical tandem catalysis

Related Links
Brookhaven National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Novel applications for coal in 2D electronic devices
Los Angeles CA (SPX) Jan 10, 2024
In a remarkable turn of events for an industry traditionally associated with fossil fuels, coal has been identified as a potential key player in the future of microelectronics. A collaborative effort involving the University of Illinois Urbana-Champaign, the National Energy Technology Laboratory (NETL), Oak Ridge National Laboratory, and Taiwan Semiconductor Manufacturing Company (TSMC) has revealed how coal, often regarded as a contributor to climate change, could significantly impact next-generation e ... read more

CARBON WORLDS
Japan to double emergency funds after New Year's Day quake

Freezing in makeshift tents, Gazans burn plastic to survive

Streets all but empty in Ecuador as gang attacks sow terror

Israeli arts school battles for normality in wartime

CARBON WORLDS
Epic says Apple court fight is 'lost'

NASA's Cryo Efforts Beyond the Atmosphere

Skeyeon unveils novel patent for Enhanced VLEO satellite communication

Researchers release open-source space debris model

CARBON WORLDS
Pacific nation Nauru cuts ties to Taiwan, switches to China

A single-celled microbe is helping corals survive climate change

A global study reveals pathways to save threatened sharks

Spa water's origins deep below the Earth's surface

CARBON WORLDS
Chasing the light: Sandia study finds new clues about warming in the Arctic

Deciphering the 2022 Antarctic heatwave

This US-Indian Satellite Will Monitor Earth's Changing Frozen Regions

Arctic cold snap transforms into a blessing

CARBON WORLDS
Syrian farmers abandon the land for steadier jobs

UH trains future agri-scientists to outsmart climate change threats to food crops

High-nutritional crops needed in Africa as population increases

Jordan's mission to save its ancient olive trees

CARBON WORLDS
Mauritius mopping up after storm Belal wreaks havoc

Iceland eruption confirms faultline has reawakened

Torrential rains leave at least 11 dead in Brazil

Villagers evacuate after Indonesia's Mount Marapi eruption

CARBON WORLDS
Seven killed by strike in Sudan's White Nile State: activists

More than 30 killed in strikes on Sudan capital: NGO

China supports Somalia's 'integrity' after Ethiopia-Somaliland accord

Chinese foreign minister to visit Egypt, Tunisia this week: ministry

CARBON WORLDS
Many cities across the United States could become ghost towns by 2100

Scientists discover dopamine at the heart of desire

China's population decline accelerates in 2023

Scientists clone first rhesus monkey using new method

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.