. | . |
Clean and green: A moss that removes lead from water by Staff Writers Tokyo, Japan (SPX) Jan 19, 2018
Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan have demonstrated that that moss can be a green alternative for decontaminating polluted water and soil. Published in PLOS One, the study shows that in particular, the moss Funaria hygrometrica tolerates and absorbs an impressive amount of lead (Pb) from water. Lead-contaminated water is a serious environmental concern that has recently proved to be disastrous when left untreated. Compounding the problem, the typical way to remove lead or other heavy metals from water requires fossil fuels and a tremendous amount of energy. As an alternative to these typical processes, phytoremediation is a method that uses photosynthesizing organisms to clean up soil or water contamination. The CSRS researchers began their search for a phytoremediation-based removal method by looking at F. hygrometrica, a moss that is known to grow well in sites contaminated with metals like copper, zinc, and lead. "We found that the moss can function as an excellent lead absorbent when in the protonema stage of development," says first author Misao Itouga. "This valuable ability means that moss protonema will likely make exceptional wastewater cleaners in mining and chemical industries." To characterize the metal-absorbing ability of the moss, the team first prepared solutions with varying concentrations of 15 different metals and exposed them to F. hygrometrica protonema. After 22 hours of exposure, mass-spectrometer analysis showed that the moss cells had absorbed lead up to 74% of their dry weight, which is quite high and much higher than any of the other metals. Knowing where the lead accumulates is important for understanding how it occurs and for developing the most efficient phytoremediation. Analysis showed that within the moss protonema cells, more that 85% of the lead had accumulated in the cell walls, with smaller amounts being found in organelle membranes and inside the chloroplasts where photosynthesis occurs. Focusing on the cell walls, the team found that they absorbed lead even after being removed from living moss. This means that there is something special about the cell walls of this species of moss that allows them to thrive in environments that are toxic to other plants. Analysis with two-dimensional nuclear magnetic resonance indicated that polygalacturonic acid in the cell walls was responsible for absorbing the lead. "We compared F. hygrometrica data with those from land plants and seaweeds", explains Itouga, "and found that the presence of polygalacturonic acid in the cell wall is one of the characteristics that separated this type of moss from other plants." They next determined that the protonema cells absorbed lead well at pH values between 3 and 9, which is important because the acidity of metal-polluted water can vary. "Our findings show that F. hygrometrica is a useful bio-material for recovering lead from aqueous solutions," says Group leader Hitoshi Sakakibara. "and will contribute to the Sustainable Development Goals set by the United Nations, specifically the Life on Land goal. We are currently exploring opportunities to work with recycling-oriented companies." Itouga M, Hayatsu M, Sato M, Tsuboi Y, Kato Y, Toyooka K, et al. (2017) Protonema of the moss Funaria hygrometrica can function as a lead (Pb) Adsorbent. PLOS One. 12(12) e0189726 doi: 10.1371/journal.pone.0189726
Cape Town (AFP) Jan 16, 2018 As Cape Town suffers its worst drought in a century, residents were warned by the mayor on Tuesday that they face losing piped water to their homes by April 21. If rains do not materialise and drastic consumption reductions are not achieved by "Day Zero", the city's people face the prospect of queueing at standpipes for daily rations of 25 litres (9.2 US gallons) of water. The city, whi ... read more Related Links RIKEN Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |