. | . |
Combating sulphuric acid corrosion at wastewater plants by Staff Writers Styria, Austria (SPX) Feb 26, 2018
Wastewater systems are integral to infrastructure in every community. In an ideal world, they operate smoothly and are long-lasting. But biogenic transformation processes in sewage and water treatment systems are a "natural enemy" of conventional plants, frequently causing damage to concrete and metal elements that is expensive to repair. As a result, it is not uncommon for wastewater systems to have a lifespan of under ten years, before they need to be refurbished or individual components replaced. Toxic gases released during biogenic processes, such as hydrogen sulphide, also pose a significant health risk, causing a range of symptoms from irritation to respiratory failure and death. Writing in the journal Water Research, an interdisciplinary group of researchers from TU Graz and the University of Graz has outlined strategies aimed at preventing what is termed microbial induced concrete corrosion (MICC). The research team comprises two TU Graz staff members - Cyrill Grengg of the Institute of Applied Geosciences and Florian Mittermayr of the Institute of Technology and Testing of Construction Materials - as well as Gunther Koraimann of the University of Graz's Institute of Molecular Biosciences. Microbial induced concrete corrosion: turning a blind eye not the answer Cyrill Grengg of the Institute of Applied Geosciences at TU Graz explained: "MICC often corrodes the conventional types of concrete used in wastewater treatment plants at a rate of a centimetre or more per year. Accordingly, the concrete elements can be destroyed in a matter of only a few years, causing significant damage to wastewater systems." According to the researchers, there is often a lack of awareness of these processes and the resulting threat to wastewater infrastructure and human health. "Closing the manhole covers and looking the other way is not the answer," Grengg added. In Germany alone, the economic impact of wastewater system repairs is put at around EUR 450 million per year. Although no data are currently available for Austria, the costs can be extrapolated and also applied to other European countries. Microbial induced acid corrosion (MICC) in wastewater treatment facilities results from a sequence of biogenic sulphate reduction reactions, followed by reoxidation. Initially, sulphate in pressure pipelines or standing wastewater is reduced by bacteria under anaerobic - or oxygen-free - conditions, forming hydrogen sulphide. This pungent, highly poisonous gas escapes into the sewer air and diffuses into sewer pipes and manholes. There reoxidation by autotrophic bacteria takes place on concrete walls that do not even come into contact with wastewater. These microorganisms produce sulphuric acid which reacts with concrete construction elements. As Gunther Koraimann of the Institute of Molecular Biosciences at the University of Graz, who has studied these processes in detail, explains: "This leads to the vigorous formation of a biofilm on the surface of the concrete, a reduction of the pH value to below two, in other words highly acidic, and extensive formation of new minerals, mainly in the form of gypsum. The combination of these processes results in the rapid destruction of the concrete."
Holistic solution In this context, geopolymer concrete proved to be particularly well suited to withstand acid corrosion. When developing this building material, resistance to acid was an extremely desirable property, as were highly antibacteriostatic surfaces, on which the research team made significant advances - microorganisms that trigger the initial oxidation process are unable to settle on such surfaces in the first place. In turn, this prevents the formation of sulphuric acid. Florian Mittermayr of the Institute of Technology and Testing of Construction Materials at TU Graz commented: "We achieved some very promising results with materials that have a far greater lifespan than conventional types of concrete. Use of these long-lasting materials would allow operators to refurbish damaged wastewater systems, significantly extending their service life and reducing the financial burden on local government and wastewater associations." The researchers published their latest findings on MICC prevention in the current issue of the journal Water Research 134 (2018) 341 - 352: "Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review." The Austrian province of Styria provided financial backing for the research, and is dedicated to raising awareness of this global problem among Styrian local authorities and regional wastewater associations.
Cape Town now faces dry taps by July 9 Cape Town (AFP) Feb 20, 2018 Residents of drought-stricken Cape Town received good news Tuesday when city officials said they now face losing piped water to their homes by July 9 - a month later than last forecast. But Capetonians are not yet out of the woods. If drastic consumption reductions are not achieved by so-called "Day Zero" - the last day of normal water supply - people will have to queue at 200 standpipes for daily rations of 25 litres (6.6 US gallons). The city, which attracts millions of tourists every year, ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |