Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
Computer Simulations Yield Clues to How Cells Interact With Surroundings
by Dan Krotz for Berkeley News
Berkeley CA (SPX) Mar 28, 2013


Computer models offer a new look at the molecular machinery that enables cells to interact with their environment. This schematic shows two integrin components (red and blue) protruding from a cell membrane. (Credit: Mofrad lab).

Your cells are social butterflies. They constantly interact with their surroundings, taking in cues on when to divide and where to anchor themselves, among other critical tasks.

This networking is driven in part by proteins called integrin, which reside in a cell's outer plasma membrane. Their job is to convert mechanical forces from outside the cell into internal chemical signals that tell the cell what to do. That is, when they work properly. When they misfire, integrins can cause diseases such as atherosclerosis and several types of cancer.

Despite their importance-good and bad-scientists don't exactly know how integrins work. That's because it's very difficult to experimentally observe the protein's molecular machinery in action. Scientists have yet to obtain the entire crystal structure of integrin within the plasma membrane, which is a go-to way to study a protein's function. Roadblocks like this have ensured that integrins remain a puzzle despite years of research.

But what if there was another way to study integrin? One that doesn't rely on experimental methods? Now there is, thanks to a computer model of integrin developed by Berkeley Lab researchers. Like its biological counterpart, the virtual integrin snippet is about twenty nanometers long. It also responds to changes in energy and other stimuli just as integrins do in real life. The result is a new way to explore how the protein connects a cell's inner and outer environments.

"We can now run computer simulations that reveal how integrins in the plasma membrane translate external mechanical cues to chemical signals within the cell," says Mohammad Mofrad, a faculty scientist in Berkeley Lab's Physical Biosciences Division and associate professor of Bioengineering and Mechanical Engineering at UC Berkeley. He conducted the research with his graduate student Mehrdad Mehrbod.

Their "molecular dynamics" model is the latest example of computational biology, in which scientists use computers to analyze biological phenomena for insights that may not be available via experiment.

As you'd expect from a model that accounts for the activities of half a million atoms at once, the integrin model takes a lot of computing horsepower to pull off. Some of its simulations require 48 hours of run time on 600 parallel processors at the U.S. Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC), which is located at Berkeley Lab.

The model is already shedding light on what makes integrin tick, such as how they "know" to respond to more force with greater numbers. When activated by an external force, integrins cluster together on a cell's surface and join other proteins to form structures called focal adhesions. These adhesions recruit more integrins when they're subjected to higher forces. As the model indicates, this ability to pull in more integrins on demand may be due to the fact that a subunit of integrin is connected to actin filaments, which form a cell's skeleton.

"We found that if actin filaments sustain more forces, they automatically bring more integrins together, forming a larger cluster," says Mehrbod.

The model may also help answer a longstanding question: Do integrins interact with each other immediately after they're activated? Or do they not interact with each other at all, even as they cluster together?

To find out, the scientists ran simulations that explored whether it's physically possible for integrins to interact when they're embedded in the plasma membrane. They found that interactions are likely to occur only between one compartment of integrin called the B-subunit.

They also discovered an interesting pattern in which integrins fluctuate. Two integrin sections, one that spans the cell membrane and one that protrudes from the cell, are connected by a hinge-like region. This hinge swings about when the protein is forced to vibrate as a result of frequent kicks from other molecules around it, such as water molecules, lipids, and ions.

These computationally obtained insights could guide new experiments designed to uncover how integrins do their job.

"Our research sets up an avenue for future studies by offering a hypothesis that relates integrin activation and clustering," says Mofrad.

The research was supported by a National Science Foundation CAREER award to Mofrad. NERSC is supported by DOE's Office of Science. Mohammad Mofrad, a faculty scientist in Berkeley Lab's Physical Biosciences Division and associate professor of Bioengineering and Mechanical Engineering at UC Berkeley. He conducted the research with his graduate student Mehrdad Mehrbod.

They report their research in a recent issue of PLoS Computational Biology.

.


Related Links
Berkeley Lab
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
What a bunch of dodos
London UK (SPX) Mar 28, 2013
Research carried out by the Zoological Society of London (ZSL) and collaborators reveals that the last region on earth to be colonised by humans was home to more than 1,000 species of birds that went extinct soon after people reached their island homes. The paper was published in the journal Proceedings of the National Academy of Sciences USA. Almost 4,000 years ago, tropical Pacific ... read more


FLORA AND FAUNA
Disasters caused $186 bn in damage last year: Swiss Re

Outside View: Homeless youth awareness

Britain enhancing SAR services

Los Angeles drills response to 7.8 quake

FLORA AND FAUNA
Lasers could yield particle research tool

Paint-on plastic electronics: Aligning polymers for high performance

DARPA Envisions the Future of Machine Learning

Removing orbital debris with less risk

FLORA AND FAUNA
Scientists confirm first two-headed bull shark

Predictions of climate impacts on fisheries can be a mirage

Researchers Issue Forecast for 'Moderate' New England Red Tide in 2013

Slovenia seeks better water management

FLORA AND FAUNA
The long winter ahead

For polar bears, it's survival of the fattest

NASA Begins New Season of Arctic Ice Science Flights

Significant contribution of Greenland's peripheral glaciers to sea-level rise

FLORA AND FAUNA
Climate change rewrites world wine list

Pesticides short-circuit bee brains: study

Brazil grocers pledge to shun Amazon meat

Brazil supermarkets to keep Amazon meat off shelves

FLORA AND FAUNA
Iceland sees unusual seismic activity at Hekla volcano

Huge and widespread volcanic eruptions triggered the end-Triassic extinction

Two quakes rattle Mexico

Six killed, 11 missing in Indonesian landslide: official

FLORA AND FAUNA
China an inspiration for S.Africa, Zuma tells Xi

Call for probe into S.Africa military presence in C.Africa

Sierra Leone sends 850 soldiers to Somalia

China's Xi vows to 'intensify' ties with Africa

FLORA AND FAUNA
Urban vegetation deters crime in Philadelphia

Patents said threat to 'genomic liberty'

'End of Men'? Not Even Close, Says UC San Diego Report on Gender in the Professions

Wireless, implanted sensor broadens range of brain research




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement