. | . |
Crystals help volcanoes cope with pressure by Staff Writers Fairbanks AK (SPX) Jul 12, 2017
University of Alaska Fairbanks researchers have discovered that volcanoes have a unique way of dealing with pressure - through crystals. According to a new study published in the Journal of Geology, a network of microscopic crystals can lessen the internal pressure of rising magma and reduce the explosiveness of eruptions. Crystals can form in the rising molten rock in as little as 18 minutes. If the magma becomes more than 20 percent crystals, they can act like guard rails that funnel gas to possible cracks within the volcano or to the opening at the Earth's surface. "The problem is when the gas can't get out," said Amanda Lindoo, lead author and UAF geosciences doctoral student. "That causes a buildup in pressure that can lead to the very explosive eruptions that shoot ash plumes. The crystals can alleviate that." Co-author Jessica Larsen, a volcanologist with the UAF Geophysical Institute, said the findings challenge the prevailing assumption that the amount of silica in magma is the major driver in gas escape. The usual rule of thumb, she said, is that magmas with lots of silica are slow-moving, which can make it hard for gas to escape. While scientists know that these magmas tend to form fewer crystals, she said not much research has focused on the crystal's role in eruptions. Volcanoes in the Aleutian Islands, the Cascade Range and Central America aroused Larsen's curiosity. Some volcanoes in those regions have magma consistently high in silica, while others have low-silica magma. "If you follow the rule of thumb, then the volcanoes with low-silica magma shouldn't produce hazardous, explosive eruptions," she said. "And yet they do. We wanted to know what was swinging the pendulum, because it's important to understanding the hazards of eruptions." To study the crystals, Lindoo worked with Larsen in the Geophysical Institute's Experimental Petrology Lab, which has a furnace that can superheat volcanic rocks up to 2,400 F and melt them back into molten lava. It also has pressurizing pumps, pressure lines and valves. Lindoo created magma from eruptive materials from the Aleutian Islands. She applied extreme pressure to the magma to simulate pressures in the Earth, but then reduced pressure to mimic the way low-silica magma rises. As the magma "rose," dissolved water formed into gas bubbles - much as bubbles form when opening a bottle of pressurized soda. Crystals also grew in the molten part. Lindoo then compared lab samples to those taken from volcanic explosions and found patterns of crystal networks channeling gas where crystal formation was high. Larsen said temperature, the amount of water in the magma and the speed of the magma's rise all play a role in crystal formation. "For awhile we've understood how crystals form," said Larsen. "But we didn't know how profoundly the crystals influenced gas escape." Larsen said she will continue the research, but the next phase will look at how the different sizes and shapes of crystals influence gas escape.
Kiel, Germany (SPX) Jul 07, 2017 Climate evolution shows some regularities, which can be traced throughout long periods of earth's history. One of them is that the global average temperature and the carbon dioxide concentration in the atmosphere usually go hand-in-hand. To put it simple: If the temperatures decline, the CO2 values also decrease and vice versa. However, there are exceptions. An international team of scient ... read more Related Links University of Alaska Fairbanks Bringing Order To A World Of Disasters When the Earth Quakes A world of storm and tempest
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |