. Earth Science News .
SHAKE AND BLOW
Deep down temperature shifts give rise to eruptions
by Staff Writers
Paris (ESA) Feb 17, 2022

The astonishing force of the Tonga volcanic eruption in January 2022 shocked the world, but the fact that this underwater volcano actually erupted came as less of a surprise to geoscientists using satellite data to study changes in the temperature deep below Earth's surface. As part of the effort to understand the complexities of Earth's interior, scientists working within ESA's Science for Society 3D Earth project, have developed a state-of-the art model of the lithosphere, which is a term to describe Earth's brittle crust and the top part of the upper mantle, and the sub-lithospheric upper mantle down to 400 km depth. The model combines different satellite data, such as gravity data from ESA's GOCE mission, with in-situ observations, primarily seismic tomography. The model that show differences in temperature, or thermal structures, indicated that the Tonga volcano was due to erupt at some point.

The Hunga Tonga-Hunga Ha'apai volcano is located in a back arc basin, created by the subduction of the Tonga slab. Back arc volcanoes are associated with the cold slab being melted by the mantle as the slab slides down into the mantle. It is a part of the Tonga-Kermadec arc, where the edge of the Pacific tectonic plate dives beneath the Australian Plate. Here, seismic tomography shows the layer of hydrated, partially molten rock above the plunging Pacific Plate, which feeds the volcanoes of the arc.

The astonishing force of the Tonga volcanic eruption shocked the world, but the fact that this underwater volcano actually erupted came as less of a surprise to geoscientists using satellite data to study changes in the temperature deep below Earth's surface.

The cataclysmic explosion of the Hunga Tonga-Hunga Ha'apai volcano in January is reported to have been the biggest eruption recorded anywhere on the planet in 30 years. It sent a plume of ash soaring into the sky, left the island nation of Tonga smothered in ash, sonic booms were heard as far away as Alaska and tsunami waves raced across the Pacific Ocean.

While the Tonga eruption was powerful but short, last year's eruption of the Cumbre Vieja volcano on the Spanish Canary Island of La Palma was less explosive but lasted for almost three months.

Although different, both of these recent eruptions remind us all of how devastating nature can be. A better understanding of the natural processes that are occurring deep below our feet might bring the possibility of predicting eruptions a little closer.

This is one of the aims of ESA's Science for Society 3D Earth project where an international group of geoscientists joined forces to develop a state-of-the art global model of the lithosphere, which is a term to describe Earth's brittle crust, the top part of the upper mantle and the sub-lithospheric upper mantle down to 400 km depth. The model combines different satellite data, such as gravity data from ESA's GOCE, with in-situ observations, primarily seismic tomography.

In their model that shows differences in temperature, or the thermal structure, of Earth's upper mantle, the researchers could see that these volcanoes would erupt at some point. Predicting exactly when this would happen is, however, more difficult.

Javier Fullea, from Complutense University of Madrid, said, "Our WINTERC-G model, which uses in-situ tomographic and GOCE satellite gravity data, shows a branch of the Azores plume. It is visible from the surface down to a depth of 400 km, at the base of the upper mantle. The plume flows southeast towards Madeira and the Canary Islands surrounding the cold mantle beneath the north Atlantic's African margin.

"Across the globe, we see that the Hunga Tonga volcano is located in a back arc basin, created by the subduction of the Tonga slab. Back arc volcanoes are associated with the cold slab being melted by the mantle as the slab slides down into the mantle."

Sergei Lebedev, from the University of Cambridge in the UK, adds, "From such models and seismic tomography, we see structures rising from great depth beneath the Canary Islands. These anomalies reflect hot material rising to the surface of Earth and are referred to as hotspots or plumes and are a constant source for the volcanos at the surface.

"The origin of the Hunga Tonga-Hunga Ha'apai volcano is different. It is a part of the Tonga-Kermadec arc, where the edge of the Pacific tectonic plate dives beneath the Australian Plate. Here, our imaging shows the layer of hydrated, partially molten rock above the plunging Pacific Plate, which feeds the volcanoes of the arc."

But where do these thermal anomalies come from?
The answer lies even deeper, at a depth of around 2800 km, and is associated with structures at the core-mantle boundary: the Large-Low Seismic Velocity Provinces (LLSVPs). These prominent continent-sized structures appear to have a big impact on how the surface behaves.

Clint Conrad, from Norway's Centre for Earth Evolution Dynamics, said, "There is a link between the flow in the mantle, where convection cells drive plate tectonics, and major plume locations. The flow along the core-mantle boundary pushes plume material against the LLSVPs, forming the plumes. In models, this flow is driven by downwelling slabs that surround the two LLSVPs. The Canary Islands, for example, site above the edge of the African LLSVP."

However, the exact origin and build-up of the LLSVPs remains elusive. At the recent 4D Earth Science meeting alternative concepts and ideas were discussed using satellite data and seismological models, which will hopefully lead to more detailed studies of Earth interior in the near future.

Bart Root from TU Delft, one of the organisers, summarises, "Clearly a multidisciplinary approach is needed, where different types of satellite data are combined with seismological data in a common way to address the exact structure of Earth's deep interior."

ESA's Diego Fernandez noted, "I'm happy to see that this ESA Science for Society project is yielding results that will further improve our understanding of the deep-lying sources of the events such as we've just seen in La Palma and Tonga.

"It is worth noting that data from the GOCE satellite has been key to this research. GOCE, which mapped variations in Earth's gravity field with extreme detail and precision, completed its mission in orbit back in 2013 - and scientists still rely on the data. This is another example of the benefits our satellite missions bring well beyond their life in orbit. "


Related Links
GOCE at ESA
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
Volcano damage to Tonga undersea cable worse than expected
Nuku'Alofa, Tonga (AFP) Feb 15, 2022
The volcanic eruption near Tonga shredded an 80-kilometre (50 mile) stretch of undersea cable, complicating efforts to reconnect the Pacific kingdom after a month of digital darkness, the company overseeing repairs says. Tonga Cable Limited chief executive James Panuve said a repair ship had located the severed ends of the 840 kilometre-long cable linking Tonga to Fiji that was cut in the January 15 blast. But rather than a clean break, Panuve said the ship found the eruption tore an 80 kilometr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
IAEA wraps up first trip to monitor Fukushima water release

Nigeria 'investigating' deadly air strike in Niger

$600 million pledged for Haiti earthquake relief

Rescuers scour for survivors after Brazil floods, landslides kill 94

SHAKE AND BLOW
Extremely rare observation of 'tennis-like' vibrations of lead

Treasured trash: UK waste gets new lease of life

Bananas to fish scales: fashion's hunt for eco-materials

New Space Station experiments study flames in space

SHAKE AND BLOW
Seagrasses continue to release methane after their die-off

Mysteries and music: listening in to underwater life

Reducing the negatives of Amazon hydropower expansion

Sudan slams Ethiopia move at controversial Nile dam

SHAKE AND BLOW
Swedish skaters return to frozen lake in style

"Blue Blob" near Iceland could slow glacial melting

New research solves longstanding Antarctic climate change mystery

New atlas finds globe's glaciers have less ice than previously thought

SHAKE AND BLOW
A life-changing fertilizer for rural farmers in Kenya

Deforestation slows in cocoa king Ivory Coast

Australian wine giant shakes off China sales collapse

Brazil Chamber passes controversial pesticide bill

SHAKE AND BLOW
Deep down temperature shifts give rise to eruptions

Italy's Etna spews smoke and ashes, closing airport

High-flying NASA 'NACHOS' instrument may help predict volcanic eruptions

Four children among six dead in DR Congo deluge

SHAKE AND BLOW
US-led anti-jihadist military drills begin in I.Coast

Morocco creates new military zone along Algeria border

Algeria's 60 years of complex relations with former occupier France

Princess calls for Belgium to 'apologise' for colonial past

SHAKE AND BLOW
Shelter for traumatised apes in DR Congo's strife-torn east

Orangutans instinctively use hammers to strike and sharp stones to cut

Watch a chimpanzee mother apply an insect to a wound on her son

First evidence of long-term directionality in the origination of human mutation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.