. Earth Science News .
WATER WORLD
Devices assembled from 2D materials separate different salts in seawater
by Staff Writers
Manchester UK (SPX) Oct 31, 2017


To better understand the fundamental mechanisms behind ion transport, a team led by Sir Andre Geim of The University of Manchester made atomically flat slits measuring just several angstroms in size. These channels are chemically inert with smooth walls on the angstrom scale.

2-dimensional materials have been successfully assembled into devices with the smallest possible man made holes for water desalination.

Researchers at the National Graphene Institute (NGI) at The University of Manchester have succeeded in fabricating tiny slits in a new membrane that are just several angstroms (0.1nm) in size. This has allowed the study of how various ions pass through these tiny holes.

The slits are made from graphene, hexagonal boron nitride (hBN) and molybdenum disulphide (MoS2) and, surprisingly, allow ions with diameters larger than the size of the slit to permeate through. The size-exclusion studies allow for a better understanding of how similar scale biological filters such as aquaporins work and so will help in the development of high-flux filters for water desalination and related technologies.

For scientists interested in the behaviour of fluids and their filtration, it has been an ultimate but seemingly distant goal to controllably fabricate capillaries with dimensions approaching the size of small ions and individual water molecules.

Researchers have been trying to mimic naturally-occurring ion transport systems, but this has proved to be no easy task. Channels fabricated with standard techniques and conventional materials have unfortunately been limited in size by the intrinsic roughness of a material's surface, which is usually at least ten times bigger than the hydrated diameter of small ions.

Earlier this year graphene-oxide based membranes developed at the NGI attracted considerable attention as promising candidates for new filtration technologies. This research utilising the new toolkit of 2D materials demonstrates the real-world potential of providing clean drinking water from salt water.

To better understand the fundamental mechanisms behind ion transport, a team led by Sir Andre Geim of The University of Manchester made atomically flat slits measuring just several angstroms in size. These channels are chemically inert with smooth walls on the angstrom scale.

The researchers made their slit devices from two 100-nm thick crystal slabs of graphite measuring several microns across that they obtained by shaving off bulk graphite crystals. They then placed rectangular-shaped pieces of 2D atomic crystals of bilayer graphene and monolayer MoS2 at each edge of one of the graphite crystal slabs before placing another slab on top of the first. This produces a gap between the slabs that has a height equal to the spacers' thickness.

"It's like taking a book, placing two matchsticks on each of its edges and then putting another book on top." explains Geim. "This creates a gap between the books' surfaces with the height of the gap being equal to the matches' thickness. In our case, the books are the atomically flat graphite crystals and the matchsticks the graphene or MoS2 monolayers."

The assembly is held together by van der Waals forces and the slits are roughly the same size as the diameter of aquaporins, which are vital for living organisms. The slits are the smallest size possible since slits with thinner spacers are unstable and collapse because of attraction between opposite walls.

Ions flow through the slits if a voltage is applied across them when they are immersed in an ionic solution, and this ion flow constitutes an electric current. The team measured the ionic conductivity as they passed through chloride solutions via the slits and found that ions could move through them as expected under an applied electric field.

"When we looked more carefully, we found that bigger ions moved through more slowly than smaller ones like potassium chloride" explains Dr Gopi Kalon, a postdoctoral researcher who led the experimental effort.

Dr Ali Esfandiar, who is the first author of the paper, adds "The classical viewpoint is that ions with a diameter larger than the slit size cannot permeate, but our results show that this explanation is too simplistic. Ions in fact behave like soft tennis balls rather than hard billiard ones, and large ions can still pass - either by distorting their water shells or maybe shedding them altogether.

The new research as published in Science, shows that these newly observed mechanisms plays a key role for desalination using the size exclusion and is a key step to creating high-flux water desalination membranes.

WATER WORLD
Scientists warn that saline lakes in dire situation worldwide
Salt Lake City UT (SPX) Oct 26, 2017
Saline lakes around the world are shrinking in size at alarming rates. But what - or who - is to blame? Lakes like Utah's Great Salt Lake, Asia's Aral Sea, the Dead Sea in Jordan and Israel, China's huge Lop Nur and Bolivia's Lake Popo are just a few that are in peril. These lakes and others like them are suffering massive environmental problems according to a group of scientists and water manag ... read more

Related Links
National Graphene Institute at The University of Manchester
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
$129 bn in extreme weather losses last year: climate report

Displaced Puerto Ricans find refuge in New York

Fighting to farming: New life for Colombia's ex-rebels

Puerto Rico 'heartbreaking' five weeks post-storm

WATER WORLD
Turning a material upside down can sometimes make it softer

Nanoscale textures make glass invisible

New property found in unusual crystalline materials

MIT students fortify concrete by adding recycled plastic

WATER WORLD
Fossil coral reefs show sea level rose in bursts during last warming

The oceans were colder than we thought

Chile battling to save a favorite clam

Underwater sound waves help scientists locate ocean impacts

WATER WORLD
Hopes dashed for giant new Antarctic marine sanctuary

'Scars' left by icebergs record West Antarctic ice retreat

Secrets of hidden ice canyons revealed

Groundwater and tundra fires may work together to thaw permafrost

WATER WORLD
Crops evolving 10 millennia before experts thought

Rainy summer puts Germans off their beer

Living mulch builds profits, soil

EU member states to vote on five-year weedkiller renewal next month

WATER WORLD
Yellowstone spawned twin super-eruptions that altered global climate

Tropical Storm Philippe crosses Cuba towards Florida

Typhoon Saola brings heavy rain in southern Japan

Authorities lower Bali volcano alert status

WATER WORLD
Death of soldiers highlights US military presence in Niger

Pentagon looks at stepped-up Africa role to counter IS

US military to pursue Niger operations after deadly attack

Niger raid highlights US forces' growing Africa role

WATER WORLD
Older Neandertal survived with a little help from his friends

Remote Amazon tribe tries to straddle two worlds

Determining when humans started impacting the planet on a large scale

How small-world networks occur within bigger and more complex structures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.