. Earth Science News .
Dirty Snow Causes Early Runoff In Cascades, Rockies

They found that changes to snow's brightness results in its melting weeks earlier in spring than with pristine snow. In addition, less mountain snow going into late spring means reduced runoff in late spring and summer. They will report their findings in an upcoming issue of the Journal of Geophysical Research - Atmospheres.
by Staff Writers
Richland WA (SPX) Jan 22, 2009
Soot from pollution causes winter snowpacks to warm, shrink and warm some more. This continuous cycle sends snowmelt streaming down mountains as much as a month early, a new study finds. How pollution affects a mountain range's natural water reservoirs is important for water resource managers in the western United States and Canada who plan for hydroelectricity generation, fisheries and farming.

Scientists at the Department of Energy's Pacific Northwest National Laboratory conducted the first-ever study of soot on snow in the western states at a scale that predicted impacts along mountain ranges. They found that soot warms up the snow and the air above it by up to 1.2 degrees Fahrenheit, causing snow to melt.

"If we can project the future - how much water we'll be getting from the rivers and when - then we can better plan for its many uses," said atmospheric scientist Yun Qian. "Snowmelt can be up to 75 percent of the water supply, in some regions. These changes can affect the water supply, as well as aggravate winter flooding and summer droughts."

The soot-snow cycle starts when soot, a byproduct of burning fossil fuels, darkens snow it lands upon, which then absorbs more of the sun's energy than clean white snow. The resulting thinner snowpack reflects less sunlight back into the atmosphere and further warms the area, continuing the snowmelt cycle.

This study revealed regional changes to the snowpack caused by soot, whereas other studies looked at the uniform changes brought by higher air temperatures due to greenhouse gases.

Previous studies have examined the effect of airborne or snowbound soot on global climate and temperatures. Qian and his colleagues at PNNL used a climate computer model to zoom in on the Rocky Mountain, Cascade, and other western United States mountain ranges. They modeled how soot from diesel engines, power plants and other sources affected snowpacks it landed on.

They found that changes to snow's brightness results in its melting weeks earlier in spring than with pristine snow. In addition, less mountain snow going into late spring means reduced runoff in late spring and summer. They will report their findings in an upcoming issue of the Journal of Geophysical Research - Atmospheres.

Making Snowhills from Mountains
Researchers know that soot settles on snow. And like an asphalt street compared to a concrete sidewalk, dirty snow retains more heat from the sun than bright white snow. Qian and colleagues wanted to determine to what degree dark snow contributes to the declining snowpack.

To get the kind of detail from their computer model that they needed, the PNNL team used a regional model called the Weather Research and Forecasting model - or WRF, developed in part at the National Center for Atmospheric Research in Boulder, Colo.

Compared to planet-scale models that can distinguish land features 200 kilometers apart, this computer model zooms in on the landscape, increasing resolution to 15 kilometers. At 15 kilometers, features such as mountain ranges and soot deposition are better defined.

Recently, PNNL researchers added a software component to WRF that models the chemistry of tiny atmospheric particles called aerosols and their interaction with clouds and sunlight.

Using the WRF-chem model, the team first examined how much soot in the form of so-called black carbon would land on snow in the Sierra Nevada, Cascade and Rocky Mountains.

Then the team simulated how that soot would affect the snow's brightness throughout the year. Finally, they translated the brightness into snow accumulation and melting over time.

Gray Outlook
"Earlier studies didn't talk about snowpack changes due to soot for two reasons," said atmospheric scientist and co-author William Gustafson.

"Soot hasn't been widely measured in snowpack, and it's hard to accurately simulate snowpack in global models. The Cascades have lost 60 percent of their snowpack since the 1950s, most of that due to rising temperatures. We wanted to see if we could quantify the impact of soot."

Their simulations compared well to data collected on snowpack distribution and water runoff. But their first experiment did not include all sources of soot, so they modeled what would happen if enough soot landed on snow to double the loss of brightness.

In this computer simulation, the regional climate and snowpack changed significantly, and not in a simply predictable way.

Overall, doubling the dimming of the snow did not lead to twice as high temperature changes - it led to an approximate 50 percent increase in the snow surface temperature. The drop in snow accumulation, however, more than doubled in some areas.

Snowpack over the central Rockies and southern Alberta, for example, dropped two to 50 millimeters over the mountains during late spring and early winter. The most drastic changes occurred in March, the model showed.

The team also found that soot decreased snow's brightness in two ways. About half of soot's effect came from its dark color. The other half came indirectly from reducing the size of the snowpack, exposing the underlying darker earth.

Studies like this one start to unmask pollution's role in the changing climate. While greenhouse gases work unseen, soot bares its dark nature, with a cloak that slowly steals summertime's snow.

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Pacific Northwest National Laboratory
It's A White Out at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Arctic front freezes US, Canada in record cold snap
Washington (AFP) Jan 16, 2009
A record cold snap gripped the American Midwest Friday as temperatures plummeted to lows of minus 30 degrees Fahrenheit (minus 34 degrees Celsius) and officials scrambled to protect the homeless and vulnerable.







  • Indonesia braces for flood-related diseases
  • China to rebuild quake town, call it 'Eternal Prosperity': state media
  • Australia boosts aid to flood-ravaged Fiji
  • As lightning deaths soar, Cambodians look to superstition

  • Climate fight will cost 175 billion euros a year by 2020: EU
  • Swings In North Atlantic Oscillation Variability Linked To Climate Warming
  • Slight Changes In Climate May Trigger Abrupt Ecosystem Responses
  • Drought-hit Kenya declares 'national disaster'

  • First Global Hawk Unmanned System For Environmental Science Research
  • Landmark Year Ahead For Earth Observation Science Missions
  • Satellite to keep eye on Ecuadoran turtle
  • Mapping In A One Meter Sea Level Rise

  • Flexible Photodetectors Could Help Sharpen Photos
  • Smart Lighting: New LED Drops The Droop
  • Carnegie Mellon Researchers Develop New Research Tool
  • China's CNOOC to defy low oil price and boost production in 2009

  • China seeks to ease fears over bird flu threat
  • China to distribute new AIDS drugs
  • Bird flu threat in China rises as third person dies
  • China warns of bird flu risk after second fatality

  • Museomics Yields New Insights Into Extinct Tasmanian Tiger
  • Elusive search for Kruger crocodile die-off baffles scientists
  • Genetic Snapshot Of Iceland 1,000 Years Ago
  • A Case Of Mistaken Dino-Identity

  • Refinery Dust Reveals Clues About Local Polluters
  • Hong Kong's economic growth spluttering on filthy air
  • Report Calls Aerosol Research Key To Improving Climate Predictions
  • More than 80 pct of China's coastal waters polluted: report

  • Mummies Calling For Lenin Burial Arrested On Red Square
  • Adaptation Plays A Significant Role In Human Evolution
  • As Super-Predators, Humans Reshape Their Prey At Super-Natural Speeds
  • First Americans Arrived As Two Separate Migrations Says New Genetic Evidence

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement