. Earth Science News .
Distinct Brain Regions Specialized For Faces And Bodies

In this image, the bottom surface of the brain is schematically inflated to show the two spatially close but functionally distinct regions with face selectivity (pink) and body selectivity (yellow). Purple indicates where these selectivities overlap. Image credit: Rebecca Frye Schwarzlose, McGovern Institute for Brain Research at MIT.

Cambridge MA (SPX) Dec 01, 2005
Are you tempted to trade in last year's digital camera for a newer model with even more megapixels? Researchers who make images of the human brain have the same obsession with increasing their pixel count, which increases the sharpness (or "spatial resolution") of their images.

Improvements in spatial resolution are happening as fast in brain imaging research as they are in digital camera technology. Nancy Kanwisher's lab in the McGovern Institute for Brain Research at MIT are now using their higher resolution scans to produce much more detailed images of the brain than were possible just a couple years ago. Just as "Hi-Def" TV shows clearer views of a football game, these finely grained images are providing new answers to some very old questions in brain research.

One such question hinges on whether the brain is comprised of highly specialized parts, each optimized to conduct a single, very specific function. Or is it instead a general-purpose device that handles many tasks but specializes in none? Using the higher resolution scans, the McGovern Institute research team of Rebecca Schwarzlose, Christopher Baker, and Nancy Kanwisher now provides some of the strongest evidence ever reported for extreme specialization. Their study appeared in the November 23rd issue of The Journal of Neuroscience.

The study focuses on face recognition, long considered an example of brain specialization. In the 1990s, researchers, including Kanswisher, identified a region known as the fusiform face area (FFA), located towards the back of the brain and on the bottom surface, as a potential brain center for face recognition.

They pointed to evidence from brain imaging experiments, and to the fact that people with damage to this brain region cannot recognize faces, even those of their family and closest friends. However, more recent brain imaging experiments have challenged this claimed specialization by showing that this region also responds strongly when people see images of bodies and body parts, not just faces. The new McGovern Institute study now answers this challenge and supports the original specialization theory.

Schwarzlose and her colleagues suspected that the strong response of the face area to both faces and bodies might result from the blurring together of two distinct but neighboring brain regions that are too close together to distinguish at standard scanning resolutions. To test this idea, they increased the resolution of their images (like increasing the megapixels on a digital camera) ten-fold to get sharper images of brain function.

Indeed, at this higher resolution they could clearly distinguish two neighboring regions. One was primarily active when people saw faces (not bodies), and the other when people saw bodies (not faces).

This finding supports the original claim that the face area is in fact dedicated exclusively to face processing. The results further demonstrate a similar degree of specialization for the new "body region" next door.

The team's new discovery highlights the importance of improved spatial resolution in studying the structure of the human brain. Just as a higher megapixel digital camera can show greater detail, new brain imaging methods are revealing the finer-grained structure of the human brain. Schwarzlose and her colleagues plan to use the new scanning methods to look for even finer levels of organization within the newly distinguished face and body areas.

They also want to figure out how and why the brain regions for faces and bodies land next to each other in the first place.

Rebecca Frye Schwarzlose is a graduate student and Chris Baker a post-doctoral researcher with Nancy Kanwisher, the Ellen Swallow Richards Professor of Cognitive Neuroscience in the McGovern Institute at MIT who was elected to the National Academy of Science in May 2005. The research was supported by the National Institutes of Health, the National Center for Research Resources, the Mind Institute, and the National Science Foundation's Graduate Research Fellowship Program.

Related Links
McGovern Institute at MIT
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

NSF Funds Probe Of The Quintessence Of Surprise
Los Angeles CA (SPX) Nov 29, 2005
We ignore some sudden noises, while others make us take action. We turn our eyes to look at some moving things - but not all. Why? A new theory and experimental evidence suggests a novel mathematical explanation of how brains measure "surprise" in a data stream--a theory that an NSF funded study will explore.







  • Fear And Cold Intensify In Pakistan Quake Camps
  • Winter Trebles Illnesses In Pakistan Quake Zone
  • Three Months After Katrina New Orleans Still In The Dark
  • Cash Aid Beats Supplies After Disasters: Study

  • Crystal Sponges Excel At Sopping Up CO2
  • Hydrogen Could Help Halve Global Carbon Emissions By 2050
  • Kyoto Climate Accord Becomes Operational
  • Scientific Values Are Threatened By Climate Change Denial Lobby, Claims Lord May

  • Landsat 5 Back-Up Solar Array Drive Having Technical Problems
  • New Model Protects Wetlands Of The Future
  • Earth From Space: Aircraft Contrails Over The United States
  • Envisat Monitors China's Largest Lake, Rivers Flooding

  • Norway And Britain To Cooperate On Underwater CO2 Storage
  • Canadian Technology To Reduce Emissions Around The World
  • Russia Gives Green Light To Siberia-Pacific Pipeline
  • Airline, Auto Sectors Ripe For Carbon Market: IEA

  • Needle Free Immunizations
  • The Changing Face Of AIDS
  • New Bird Flu Outbreaks As Blogs Fear FEMA Repeat
  • UN Expands Battle Against Bird Flu

  • Florida School Evolution Conflict Delayed
  • No Safe Ground For Life To Stand On During Largest Mass Extinction
  • Species Take Care Of Each Other In Ecological Communities
  • Chinese Ivory Demand Threatens Central Africian Elephants

  • China To Let UN Experts Inspect Toxic Slick
  • Nightmare On Songhua River Shocks China Out Of Eco Complacency
  • Russian Ecologists Warn Of Long Term Threat From Chinese Slick
  • Schools Reopen In Harbin As China Vows To Go All Out To Help Russia

  • Distinct Brain Regions Specialized For Faces And Bodies
  • NSF Funds Probe Of The Quintessence Of Surprise
  • Imaging Technique Visualizes Effects Of Stress On Human Brain
  • New Study Posits Evolutionary Origins Of Two Distinct Types Of Laughter

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement