|
. | . |
|
by Staff Writers Melbourne, Australia (SPX) May 22, 2013
Salamanders' immune systems are key to their remarkable ability to regrow limbs, and could also underpin their ability to regenerate spinal cords, brain tissue and even parts of their hearts, scientists have found. In research published in the Proceedings of the National Academy of Sciences researchers from the Australian Regenerative Medicine Institute (ARMI) at Monash University found that when immune cells known as macrophages were systemically removed, salamanders lost their ability to regenerate a limb and instead formed scar tissue. Lead researcher, Dr James Godwin said the findings brought researchers a step closer to understanding what conditions were needed for regeneration. "Previously, we thought that macrophages were negative for regeneration, and this research shows that that's not the case - if the macrophages are not present in the early phases of healing, regeneration does not occur," Dr Godwin said. "Now, we need to find out exactly how these macrophages are contributing to regeneration. Down the road, this could lead to therapies that tweak the human immune system down a more regenerative pathway." Salamanders deal with injury in a remarkable way. The end result is the complete functional restoration of any tissue, on any part of the body including organs. The regenerated tissue is scar free and almost perfectly replicates the injury site before damage occurred. "We can look to salamanders as a template of what perfect regeneration looks like," Dr Godwin said. Aside from "holy grail" applications, such as healing spinal cord and brain injuries, Dr Godwin believes that studying the healing processes of salamanders could lead to new treatments for a number of common conditions, such as heart and liver diseases, which are linked to fibrosis or scarring. Promotion of scar-free healing would also dramatically improve patients' recovery following surgery. There are indications that there is the capacity for regeneration in a range of animal species, but it has, in most cases been turned off by evolution. "Some of these regenerative pathways may still be open to us. We may be able to turn up the volume on some of these processes," Dr Godwin said. "We need to know exactly what salamanders do and how they do it well, so we can reverse-engineer that into human therapies."
Related Links Monash University All About Human Beings and How We Got To Be Here
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |