. Earth Science News .
Drought And Urbanization Were Ingredients For Atlanta's Perfect Storm

At 9:38 p.m. on March 14, 2008, a severe thunderstorm that formed just north of Atlanta caused damages across a 6-mile swath of the city as it strengthened into a tornado, barely missing the downtown Georgia Dome arena where thousands were watching a college basketball game that had gone into overtime. Credit: NOAA. To veiw an animation of the days leading up to the storm please go here.
by Gretchen Cook-Anderson
Greenbelt MD (SPX) Mar 14, 2009
On March 14, 2008, a tornado swept through downtown Atlanta, its 130 mile-per-hour winds ripping holes in the roof of the Georgia Dome, blowing out office windows and trashing parts of Centennial Olympic Park.

It was an event so rare in an urban landscape that researchers immediately began to examine NASA satellite data and historical archives to see what weather and climatological ingredients may have combined to brew such a storm.

Though hundreds of tornadoes form each year across the United States, records of "downtown tornadic events" are quite rare. The 2008 Atlanta tornado - the first in the city's recorded history - was also unique because it developed during extreme drought conditions.

In a NASA-funded study, researchers from Purdue University in West Lafayette, Ind., and the University of Georgia (UGA) in Athens found that intermittent rain in the days before the storms, though providing temporary drought relief, may have moistened some areas enough to create favorable conditions for severe storms to form and intensify.

Additionally, the sprawling urban landscape may have given the storms the extra, turbulent energy needed to spin up a tornado. The researchers reported their findings in January at the annual meeting of the American Meteorological Society.

"The Atlanta tornado, though forecasted well, caught us by surprise because it evolved rapidly under very peculiar conditions during a drought and over a downtown area," said Dev Niyogi, an assistant professor of regional climatology at Purdue and lead author of the modeling study.

"We wanted to know why it hit Atlanta during one of the longest, harshest droughts the southeast has experienced. Was it a manifestation of the drought? Does urban development have an effect on such a storm?"

Such questions are becoming more relevant as the Intergovernmental Panel on Climate Change, NASA, and other institutions investigate the relationships between extreme water cycle events (such as drought), land cover change, weather, and climate change.

In the southeastern U.S., tornadoes are quite common in the spring when upper level wind patterns, surface moisture, and surface weather features promote severe weather. But moisture was scarce in the weeks leading up to the March 2008 Atlanta tornado, and likely should have suppressed a storm, according to atmospheric scientist Marshall Shepherd of UGA.

Shepherd, Niyogi and colleagues recently completed a 50-year climatological assessment that finds tornadic activity is often suppressed during droughts in the Southeast.

To get to the bottom of how such a storm could have developed despite the drought, Purdue researchers Niyogi, Ming Lei, and Anil Kumar, along with Shepherd, investigated reports of isolated rain showers that had swept through parts of Alabama and northwest Georgia in the 48 hours prior to the tornado.

They suspected that these "wet pockets" might have triggered, but more likely enhanced, the initial thunderstorms.

The scattered rainfall fell between areas that received no rain, setting up pockets of high humidity between areas of warm, dry air. The wet and dry areas may have acted as weak atmospheric fronts or may have promoted air circulation and evaporation that could have intensified the storms. A similar phenomenon promotes severe thunderstorms in Florida, where moist sea breezes interact with dry interior air masses.

Niyogi and Shepherd also found evidence that storm intensity was amplified by the heat-retaining effects of Atlanta's buildings and streets. The "heat island" effect leads to warmer air temperatures in urban areas because impervious surfaces like glass, metal, concrete and asphalt absorb, reflect, and store heat differently than tree or grass-covered land.

Urban environments heat the air and cause moisture to rise quickly, creating a "thunderstorm pump" that can fuel or intensify storms. In March 2008, the differences in soil moisture and Atlanta's sprawling land cover may have provided the perfect blend for storms to intensify.

"A thunderstorm, energized by moist pockets within a drought region, grew into a tornado-causing severe thunderstorm because of weather instabilities it encountered at the rural-urban boundary," Niyogi explained.

"Drought and urbanization do not cause the thunderstorms or tornado, but ultimately they added fuel to the fire of an already energized storm," he added.

"The variable rain bands created patches of land that were wet and dry, green and not green. The combination created surface boundaries that can destabilize the weather system and energize an approaching storm, providing the one-two punch."

Niyogi, Shepherd, and colleagues used the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua satellite to assess the state of ground vegetation immediately before and after the storm, as well the long-term differences before and during the drought.

The researchers also examined rainfall estimates captured by NASA's Tropical Rainfall Measurement Mission satellite to identify the unusual bands of rainfall two days before the tornado.

Finally, they examined soil moisture data from the Japanese Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on NASA's Aqua satellite to evaluate the intensity of the drought at the time of the tornado.

When these real drought and urban land cover conditions were included in the team's atmosphere-land surface computer models, the simulations produced a more intense storm that mirrored reality.

"Our findings highlight the difficulty in de-tangling the influences of the atmosphere and of Earth's surface within the weather-hydroclimate system," said Shepherd.

"Soil moisture and urban land cover are not well-represented in weather models, but a new look at satellite data offers a fresh opportunity to improve forecasts."

"With many studies suggesting more potential for urbanization and droughts in our future," Niyogi added, "it will be important to see if this kind of intense storm development could happen more frequently in future climates."

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
NASA's Terrestrial Hydrology Program
Weather News at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Petascale Computing May Improve Storm Predictions
Chicago IL (SPX) Feb 20, 2009
Scientific computing is rapidly moving to the petascale, a quadrillion arithmetic operations per second, according to speakers at the Annual Meeting of the American Association for the Advancement of Science (AAAS).







  • Lessons From Hurricane Rita Not Practiced During Ike
  • Main Federal Disaster Relief Law Has Fallen Behind Modern Threat Levels
  • Indonesian mud victims demand compensation
  • Building collapse kills 11 China rail workers: state media

  • Gore optimistic for new climate deal in Copenhagen
  • Carbon Sinks Losing The Battle With Rising Emissions
  • CSIRO Takes Kitchen Table Climate Change Talk Global
  • Czech minister slams president over climate change

  • Satellite Spies On Tree-Eating Bugs
  • CALIPSO Finds Smoke At High Altitudes Down Under
  • Satellites track leaf beetle infestation
  • NASA presents a Webcam view of Earth

  • ACCCE Commends Western Governors For Supporting Clean Coal Technologies
  • Broadband Wireless Research Gets Green Light
  • Revealing New Apps For Carbon Nanomaterials In Hydrogen Storage
  • MIT Battery Material Could Lead To Rapid Recharging Of Many Devices

  • Malaria Immunity Trigger Found For Multiple Mosquito Species
  • Better drugs encouraging AIDS complacency: Nobel doctor
  • Hong Kong bird tests positive for H5N1
  • Hong Kong bird tests positive for H5N1

  • Protein Big Bang
  • Tropical Lizards Can't Take The Heat Of Climate Warming
  • Environmental group defends Canada's seal hunt
  • Animal-smuggling bust nets 72 people in Brazil

  • Yellowstone Alga Detoxifies Arsenic
  • Australian oil spill '10 times worse' than thought: official
  • Chinese plastic bag hero takes campaign to parliament
  • Smog raises risk of dying from lung disease: study

  • Mind-Reading Experiment Highlights How Brain Records Memories
  • 'Peking Man' 200,000 years older than thought: study
  • Girl has six organs removed in surgery
  • Swedish chimp plans ahead for attacks

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement