. | . |
ENSO heat engine shifts eastward under global warming by Staff Writers Beijing, China (SPX) Jan 13, 2020
El Nino-Southern Oscillation (ENSO) is the strongest signal in interannual climate variation. El Nino increases the precipitation over the equatorial central-eastern Pacific, which releases more latent heat into the tropical atmosphere and thus drives variations of the global climate system like a heat engine. It has been reported that ENSO-induced precipitation anomalies will shift and extend eastward under global warming, projected by climate change simulations from the phase five of the Coupled Model Intercomparison Project (CMIP5). The zonal shift of the ENSO heat engine would remarkably change responses of the global climate system to ENSO forcing. However, the projected result has not been supported by a robust mechanism, mainly due to the large uncertainties in the amplitude change of ENSO under the global warming. In a recently published study in Science Advances, an international team from China, UK and USA proposed a new mechanism to understand the eastward shift and extension of ENSO-induced precipitation anomalies under global warming. They analyzed a large ensemble climate change simulation conducted by the Met Office in UK. "We found under global warming, the weakened easterly trade wind over the tropical Pacific would weaken the meridional overturning circulation of the subtropical cell, and further cause the narrowing of the meridional span of ENSO." Said the corresponding author Dr. Bo Wu from Institute of Atmospheric Physics at Chinese Academy of Sciences. "It means that the sea surface temperature (SST) anomalies associated with the ENSO are more concentrated towards the equator. Tighter ENSO becomes more powerful in driving moisture convergence over the equatorial central-eastern Pacific, which leads to the eastward shift and extension of the precipitation anomalies, even if ENSO intensity stays unchanged under global warming." The eastward shift of the ENSO heat engine under global warming would not only lead to remarkable changes in global climate variations during ENSO years, but also accelerate the decay of El Nino events after their peak phase, thus shortening their duration.
Seasonal forecasts challenged by Pacific Ocean warming Melbourne, Australia (SPX) Dec 30, 2019 CSIRO research has found global warming will make it more difficult to predict multi-year global climate variations, a consequence of changes to long-term climate variability patterns in the Pacific Ocean. The results, published in Nature Climate Change, shed light on how the Pacific Decadal Oscillation (PDO) was responding to a changing climate, with implications for assessing multi-year risks to marine ecosystems, fisheries and agriculture. The PDO is a decadal-spanning pattern of Pacific ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |