. | . |
Efficiency of water electrolysis doubled by Staff Writers Bochum, Germany (SPX) Mar 15, 2016
Water electrolysis has not yet established itself as a method for the production of hydrogen. Too much energy is lost in the process. Researchers have now doubled the efficiency of the reaction. In the journal Nature Communications, researchers from the Ruhr-Universitat Bochum, Technical University of Munich and Universiteit Leiden report in what way the efficiency of electrodes can be increased for the purpose of water electrolysis. Typically, platinum is applied as catalyst, in order to accelerate the conversion of water to hydrogen and oxygen. For the reaction to be as efficient as possible, intermediates must not adhere too strongly or too weakly at the catalyst surface.
Traditional electrodes bind intermediates too strongly The researchers modified the properties of the platinum catalyst surface by applying a layer of copper atoms. With this additional layer, the system generated twice the amount of hydrogen than with a pure platinum electrode. But only if the researchers applied the copper layer directly under the top layer of the platinum atoms. The group observed another useful side effect: the copper layer extended the service life of the electrodes, for example by rendering them more corrosion-resistant. Water electrolysis has not yet been implemented on a large scale Only four per cent of all hydrogen produced worldwide are the result of water electrolysis. As the electrodes used in the process are not efficient enough, large-scale application is not profitable. "To date, hydrogen has been mainly obtained from fossil fuels, with large CO2 volumes being released in the process," says Wolfgang Schuhmann. "If we succeeded in obtaining hydrogen by using electrolysis instead, it would be a huge step towards climate-friendly energy conversion. For this purpose, we could utilise surplus electricity, for example generated by wind power." "In addition, the research on this reaction allows us to test, how well we can design catalyst surfaces by precisely positioning different metal atoms," adds Aliaksandr Bandarenka. "A knowledge many other catalytic processes might benefit from." J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A. S. Bandarenka (2016): Making the hydrogen evolution reaction in polymer electrolyte membrane electrolyzers even faster, Nature Communications, DOI: 10.1038/NCOMMS10990
Related Links Ruhr-University Bochum Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |