. Earth Science News .
Egalitarian Revolution In The Pleistocene

Some evolutionary biologists theorize that at some point in the Pleistocene, humans reached a level of ecological dominance that dramatically transformed the natural selection landscape. Instead of traditional "hostile forces of nature", the competitive interactions among members of the same group became the most dominant evolutionary factor. According to this still controversial view, known as the "social brain" or "Machiavellian intelligence" hypothesis, more intelligent individuals were able to take advantage of other members of their group, achieve higher social status, and leave more offspring who inherited their parent's genes for larger brain size and intelligence. As a result of this runaway process, the average brain size and intelligenc e were increasing across the whole human lineage.
by Staff Writers
Washington DC (SPX) Oct 07, 2008
Although anthropologists and evolutionary biologists are still debating this question, a new study, published in the open-access journal PLoS ONE, supports the view that the first egalitarian societies may have appeared tens of thousands of years before the French Revolution, Marx, and Lenin.

These societies emerged rapidly through intense power struggle and their origin had dramatic implications for humanity. In many mammals living in groups, including hyenas, meerkats, and dolphins, group members form coalitions and alliances that allow them to increase their dominance status and their access to mates and other resources.

Alliances are especially common in great apes, some of whom have very intense social life, where they are constantly engaged in a political maneuvering as vividly described in Frans de Waal's "Chimpanzee politics".

In spite of this, the great apes' societies are very hierarchical with each animal occupying a particular place in the existing dominance hierarchy. A major function of coalitions in apes is to maintain or change the dominance ranking. When an alpha male is well established, he usually can intimidate any hostile coalition or the entire community.

In sharp contrast, most known hunter-gatherer societies are egalitarian. Their weak leaders merely assist a consensus-seeking process when the group needs to make decisions, but otherwise all main political actors behave as equal.

Some anthropologists argue that in egalitarian societies the pyramid of power is turned upside down with potential subordinates being able to express dominance over potential alpha-individuals by creating large, group-wide political alliance.

What were the reasons for such a drastic change in the group's social organization during the origin of our own "uniquely unique" species?

Some evolutionary biologists theorize that at some point in the Pleistocene, humans reached a level of ecological dominance that dramatically transformed the natural selection landscape. Instead of traditional "hostile forces of nature", the competitive interactions among members of the same group became the most dominant evolutionary factor.

According to this still controversial view, known as the "social brain" or "Machiavellian intelligence" hypothesis, more intelligent individuals were able to take advantage of other members of their group, achieve higher social status, and leave more offspring who inherited their parent's genes for larger brain size and intelligence.

As a result of this runaway process, the average brain size and intelligenc e were increasing across the whole human lineage.

Also increasing were the abilities to keep track of within-group social interactions, to remember friends and their allies and enemies, and to attract and use allies. At some point, physically weaker members of the group started forming successful and stable large coalitions against strong individuals who otherwise would achieve alpha-status and usurp the majority of the crucial resources.

Eventually, an egalitarian society was established. Although some of its components are well supported by data, this scenario remains highly controversial.

One reason is its complexity which makes it difficult to interpret the data and to intuit the consequences of interactions between multiple evolutionary, ecological, behavioral, and social factors acting simultaneously. It is also tricky to evaluate relevant time-scales and figure out possible evolutionary dynamics.

A paper published in PLoS ONE makes steps towards answering these challenges. The paper is co-authored by Sergey Gavrilets, a theoretical evolutionary biologist, and two computer scientists, Edgar Duenez-Guzman and Michael Vose, all from the University of Tennessee, Knoxville.

The researchers built a complex mathematical model describing the process of alliance formation which they then studied using analytical methods and large-scale numerical simulations. The model focuses on a group of individuals who vary strongly in their fighting abilities.

If all conflicts were exclusively between pairs of individuals, a hierarchy would emerge with a few strongest individuals getting most of the resource.

However, there is also a tendency (very small initially) for individuals to interfere in an ongoing dyadic conflict thus biasing its outcome one way or another. Positive outcomes of such interferences increase the affinities between individuals while negative outcomes decrease them. Naturally, larger coalitions have higher probability of winning a conflict.

Gavrilets and colleagues identified conditions under which alliances can emerge in the group: increasing group size, growing awareness of ongoing conflicts, better abilities in attracting allies and building complex coalitions, and better memories of past events.

Most interestingly, the model shows that the shift from a group with no alliances to one or more alliances typically occurs suddenly, within several generations, in a phase-transition like fashion. Even more surprisingly, under certain conditions (which include some cultural inheritance of social networks) a single alliance comprising all members of the group can emerge in which resources are divided evenly.

That is, the competition among non-equal individuals can paradoxically result in their eventual equality.

Gavrilets and colleagues argue that such an "egalitarian revolution" could also follow a change in the mating system that would increase father-son social bonds or an increase in fidelity of cultural inheritance of social networks. Interestingly, the fact that mother-daughter social bonds are often very strong in apes suggests (everything else being the same) that females could more easily achieve egalitarian societies.

The model also highlights the importance of the presence of outsiders (or "scapegoats") for stability of small alliances. The researchers suggest that the establishment of a stable group-wide egalitarian alliance should create conditions promoting the origin of conscience, moralistic aggression, altruism, and other cultural norms favoring group interests over those of individuals.

Increasing within-group cohesion should also promote the group efficiency in between-group conflicts and intensify cultural group selection.

"Our language probably emerged to simplify the formation and improve the efficiency of coalitions and alliances," says Gavrilets. The scientists caution that one should be careful in applying their model to contemporary humans (whether members of modern societies or hunter-gathers).

In contemporary humans, an individual's decision to join coalitions is strongly affected by his/her estimates of costs, benefits, and risks associated as well as by cultural beliefs and traditions. These are the factors explicitly left outside of the modeling framework.

In humans, a secondary transition from egalitarian societies to hierarchical states took place as the first civilizations were emerging. How can it be understood in terms of the model discussed?

One can speculate that technological and cultural advances made the coalition size much less important in controlling the outcome of a conflict than the individuals' ability to directly control and use resources (e.g. weapons, information, food) that strongly influence the outcomes of conflicts.

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Public Library of Science
All About Human Beings and How We Got To Be Here



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Formula Predicts How People Will Migrate In Coming Decades
New York NY (SPX) Oct 02, 2008
Nearly 200 million people now live outside their country of birth. But the patterns of migration that got them there have proven difficult to project. Now scientists at Rockefeller University, with assistance from the United Nations, have developed a predictive model of worldwide population shifts that they say will provide better estimates of migration across international boundaries.







  • Algerian troops start flood clear-up operation
  • Haiti's hurricane death toll more than doubles to 793
  • Fraudsters prosecuted in Hurricane Katrina's wake
  • Wetlands Restoration Not A Panacea For Louisiana Coast

  • Emissions Rising Faster This Decade Than Last
  • Financial crisis darkens outlook for climate talks
  • Land Use In The Light Of Climate Change
  • Water Table Depth Tied To Droughts

  • Smog Blog For Central America And Caribbean Debuts
  • Infoterra Enhances Capability With Acquisition Of Imass
  • Students And Astronauts Use Powerful New Tool To Explore Earth From Space
  • Infoterra Adds High Resolution City Datasets

  • Wind farms don't pose danger to some birds
  • EnerSys Launches EcoSafe Batteries For Renewable Energy Generation Apps
  • Analysis: Ecuador rethinks oil strategy
  • Experts: Better plan needed for biofuels

  • Analysis: Flu pandemic would overwhelm
  • AIDS virus leapt the species barrier early last century: study
  • Two people die of rare form of plague in Tibet: report
  • Climate change: Floods, drought, mosquito disease aim at Europe

  • Earliest Animal Footprints Ever Found
  • Digging Up Ancient Microbes
  • Hanging on for dear life: animals from biodiversity 'Red List'
  • Quarter of species on Earth may face extinction: expert

  • Defendant in Ivorian toxic waste trial blames Trafigura affiliate
  • Pollution trial opens in Ivory Coast
  • Beijing announces steps to fight smog, traffic
  • Chemical Equator Splits Northern From Southern Air Pollution

  • Egalitarian Revolution In The Pleistocene
  • New Formula Predicts How People Will Migrate In Coming Decades
  • To Queue Or Not To Queue
  • Computers figuring out what words mean

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement