. | . |
Experts warn against mega-dams in lowland tropical forests by Staff Writers Stirling UK (SPX) Jan 09, 2019
Mega-dams should not be built in lowland tropical forest regions due to the threat they pose to biodiversity and ecosystems, according to experts at the University of Stirling. The recommendation - published in the Journal of Applied Ecology - emerged from a new study that focuses on the Balbina Hydroelectric Reservoir system in the Brazilian Amazon. Like many hydropower systems in the region, the Balbina dam caused extensive forest fragmentation, with large swathes of land flooded once the dam was closed, transforming former hilltops into islands. The combined area of forest islands created during reservoir filling is not currently explicitly considered in the Environmental Impact Assessment and licensing process of dams. Experts found that tree communities on Balbina's islands are "unstable", with some rare species becoming extinction-prone due to reduced tree recruitment and density. This could potentially lead to future losses in biodiversity and ecosystem functioning, such as carbon storage, across Balbina's 3,500 reservoir islands. Dr Isabel Jones, the ecologist from Stirling's Faculty of Natural Sciences who led the research, said: "Ideally, we recommend that dams should not be constructed in lowland tropical forest regions such as the Amazon basin, due to the far-reaching impacts of river impoundment on aquatic and terrestrial biodiversity. However, where no alternative is available, we hope to improve the environmental impact procedure and impact mitigation of future dams, by providing robust recommendations regarding dam development and operation." Flooding associated with the construction of mega-dams in lowland tropical forest regions can negatively affect biodiversity through the loss of terrestrial and aquatic habitats. Worldwide, dams have displaced between 40 and 80 million people leading to significant social impacts. In addition, reservoirs in tropical regions such as the Amazon basin can emit significant amounts of greenhouse gases including methane, which can make tropical dams far less 'green' than other renewable sources. Despite this, dam construction in Amazonia is increasing, with more than 280 new dams planned or already under construction, risking future impacts to a region that is critical for the global climatic balance and biodiversity. The new study assessed the long-term impact of dam-induced fragmentation on tropical tree communities isolated on islands following dam construction, with the aim of generating robust recommendations for dam developers and decision-makers to mitigate some of the detrimental impacts associated with dam development. The research was carried out across 89 permanent forest survey plots on 36 islands across Balbina, as well as three nearby mainland continuous forest sites. The network of forest survey plots is the most extensive established within a hydroelectric dam system. Large trees were surveyed in 2012 and saplings in 2014. Dr Jones explained: "Our research found that islands within the Balbina Hydroelectric Reservoir harboured significantly lower densities of adult and sapling trees, compared to mainland continuous forest. In other words, tree biomass is being lost on those islands. This is important to know considering the carbon emissions associated with tropical forest loss and degradation. "Furthermore, the species composition of saplings was significantly different to those of the relict adult trees on islands, indicating that future tree communities on islands will be very different to those originally there when the forest was continuous. "We also showed that the overall composition of tree communities on islands was different to those in mainland continuous forest, which means that island tree communities are changing due to being isolated within the reservoir. Loss of tree species and biomass within these remnant tree communities is largely ignored in Environmental Impact Assessments. "We show that the degradation of remnant tree communities on islands is an additional impact of dams, and must be explicitly considered in the planning and licensing of future dam construction. " The researchers also found that fires - which can spread through reservoir island systems in periods of drought when water levels are not maintained - can cause even more degradation to tree communities and that the damage is particularly severe for hard-wooded species, those which store the most carbon. The paper, Instability of insular tree communities in an Amazonian mega-dam is driven by impaired recruitment and altered species composition, is published in the Journal of Applied Ecology.
Droughts boost emissions as hydropower dries up Stanford CA (SPX) Dec 27, 2018 When hydropower runs low in a drought, western states tend to ramp up power generation - and emissions - from fossil fuels. According to a new study from Stanford University, droughts caused about 10 percent of the average annual carbon dioxide emissions from power generation in California, Idaho, Oregon and Washington between 2001 and 2015. "Water is used in electricity generation, both directly for hydropower and indirectly for cooling in thermoelectric power plants," said climate scientist Noah ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |