. Earth Science News .
FSU Geochemist Challenges Key Theory Regarding Earth's Formation

"At the highest pressures and temperatures, our experiments found palladium in the same relative proportions between rock and metal as is observed in the natural world," Humayun said. "Put another way, the distribution of palladium and other siderophile elements in the Earth's mantle can be explained by means other than millions of years of meteorite bombardment." The potential ramifications of his team's research are significant, Humayun said. "This work will have important consequences for geologists' thinking about core formation, the core's present relation to the mantle, and the bombardment history of the early Earth," he said. "It also could lead us to rethink the origins of life on our planet."
by Barry Ray
Tallahassee FL (SPX) May 02, 2008
Working with colleagues from NASA, a Florida State University researcher has published a paper that calls into question three decades of conventional wisdom regarding some of the physical processes that helped shape the Earth as we know it today.

Munir Humayun, an associate professor in FSU's Department of Geological Sciences and a researcher at the National High Magnetic Field Laboratory, co-authored a paper, "Partitioning of Palladium at High Pressures and Temperatures During Core Formation," that was recently published in the peer-reviewed science journal Nature Geoscience.

The paper provides a direct challenge to the popular "late veneer hypothesis," a theory which suggests that all of our water, as well as several so-called "iron-loving" elements, were added to the Earth late in its formation by impacts with icy comets, meteorites and other passing objects.

"For 30 years, the late-veneer hypothesis has been the dominant paradigm for understanding Earth's early history, and our ultimate origins," Humayun said. "Now, with our latest research, we're suggesting that the late-veneer hypothesis may not be the only way of explaining the presence of certain elements in the Earth's crust and mantle."

To illustrate his point, Humayun points to what is known about the Earth's composition.

"We know that the Earth has an iron-rich core that accounts for about one-third of its total mass," he said. "Surrounding this core is a rocky mantle that accounts for most of the remaining two-thirds," with the thin crust of the Earth's surface making up the rest.

"According to the late-veneer hypothesis, most of the original iron-loving, or siderophile, elements" -- those elements such as gold, platinum, palladium and iridium that bond most readily with iron -- "would have been drawn down to the core over tens of millions of years and thereby removed from the Earth's crust and mantle. The amounts of siderophile elements that we see today, then, would have been supplied after the core was formed by later meteorite bombardment. This bombardment also would have brought in water, carbon and other materials essential for life, the oceans and the atmosphere."

To test the hypothesis, Humayun and his NASA colleagues -- Kevin Righter and Lisa Danielson -- conducted experiments at Johnson Space Center in Houston and the National High Magnetic Field Laboratory in Tallahassee. At the Johnson Space Center, Righter and Danielson used a massive 880-ton press to expose samples of rock containing palladium -- a metal commonly used in catalytic converters -- to extremes of heat and temperature equal to those found more than 300 miles inside the Earth.

The samples were then brought to the magnet lab, where Humayun used a highly sensitive analytical tool known as an inductively coupled plasma mass spectrometer, or ICP-MS, to measure the distribution of palladium within the sample.

"At the highest pressures and temperatures, our experiments found palladium in the same relative proportions between rock and metal as is observed in the natural world," Humayun said. "Put another way, the distribution of palladium and other siderophile elements in the Earth's mantle can be explained by means other than millions of years of meteorite bombardment."

The potential ramifications of his team's research are significant, Humayun said.

"This work will have important consequences for geologists' thinking about core formation, the core's present relation to the mantle, and the bombardment history of the early Earth," he said. "It also could lead us to rethink the origins of life on our planet."

Community
Email This Article
Comment On This Article

Related Links
Florida State University
Explore The Early Earth at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Key Component Of Earth Crust Formed From Moving Molten Rock
Ithica NY (SPX) Mar 07, 2008
Earth scientists are in the business of backing into history -- extrapolating what happened millions of years ago based on what they can observe now. Using this method, a team of Cornell researchers has created a mathematical computer model of the formation of granulite, a fine-grained metamorphic rock, in the Earth's crust.







  • Scientists Collect Data To Aid Afghanistan Reconstruction
  • Tornado rips through Virginia, 200 injured: officials
  • 70 dead in China train crash: state media
  • Big Tokyo quake would cause human gridlock: study

  • Asia tourism, airlines 'complacent' on climate change
  • Scientists Head To Warming Alaska On Ice Core Expedition
  • Global warming? Next decade could be cooler, says study
  • Did Dust Storms Make The Dust Bowl Drought Worse

  • RADARSAT-2 Commissioned And Ready For Commercial Operation
  • Subsystems Of Cartosat-2A, IMS-1 Functioning Satisfactorily
  • 4D Ionosphere
  • Entekhabi Will Lead Science Team For NASA Satellite Mission To Map Earth's Water Cycle

  • Clean Energy Brings Natural Gas To The Golden Gate
  • Consumers Warming To LEDs As An Energy-Efficient Solution For Lighting
  • Frost And Sullivan Lauds Vaperma For Advanced Membrane-Based Separation Technology
  • Mass Megawatts Wind Power Reports US Army Sale

  • West, Central Africa seen as major source of next new disease
  • China Warns Deadly Intestinal Virus Could Kill More
  • Chinese officials accused of covering up killer virus
  • International Health Experts To Enlist The Public In War On African Malaria

  • International Team Of Researchers Explain How Birds Navigate
  • World's biggest squid reveals 'beach ball' eyes
  • Ancient Ecosystems Organized Much Like Our Own
  • Mexican sunflower origin is determined

  • Toxic ponds kill ducks in Canada
  • Researchers Look To Make Environmentally Friendly Plastics
  • Europe Spends Nearly Twice As Much As US On Nanotech Risk Research
  • Australian state to ban plastic bags

  • Ancient Nutcracker Man Challenges Ideas On Evolution Of Human Diet
  • Walker's World: French births soar
  • Decoding The Dictionary: Study Suggests Lexicon Evolved To Fit In The Brain
  • Dawn Of Human Matrilineal Diversity

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement