. Earth Science News .
WATER WORLD
Findings Overturn Old Theory Of Phytoplankton Growth

Warm water is less dense than cold water, so springtime warming creates a surface layer that essentially "floats" on top of the cold water below, slows wind-driven mixing and holds the phytoplankton in the sunlit upper layer more of the time, letting them grow faster.
by Staff Writers
Corvallis OR (SPX) Jul 20, 2010
A new study concludes that an old, fundamental and widely accepted theory of how and why phytoplankton bloom in the oceans is incorrect. The findings challenge more than 50 years of conventional wisdom about the growth of phytoplankton, which are the ultimate basis for almost all ocean life and major fisheries.

And they also raise concerns that global warming, rather than stimulating ocean productivity, may actually curtail it in some places. This analysis was published in the journal Ecology by Michael Behrenfeld, a professor of botany at Oregon State University, and one of the world's leading experts in the use of remote sensing technology to examine ocean productivity. The study was supported by NASA.

The new research concludes that a theory first developed in 1953 called the "critical depth hypothesis" offers an incomplete and inaccurate explanation for summer phytoplankton blooms that have been observed since the 1800s in the North Atlantic Ocean. These blooms provide the basis for one of the world's most productive fisheries.

"The old theory made common sense and seemed to explain what people were seeing," Behrenfeld said.

"It was based on the best science and data that were available at the time, most of which was obtained during the calmer seasons of late spring and early summer," he said. "But now we have satellite remote sensing technology that provides us with a much more comprehensive view of the oceans on literally a daily basis. And those data strongly contradict the critical depth hypothesis."

That hypothesis, commonly found in oceanographic textbooks, stated that phytoplankton bloom in temperate oceans in the spring because of improving light conditions - longer and brighter days - and warming of the surface layer.

Warm water is less dense than cold water, so springtime warming creates a surface layer that essentially "floats" on top of the cold water below, slows wind-driven mixing and holds the phytoplankton in the sunlit upper layer more of the time, letting them grow faster.

There's a problem: a nine-year analysis of satellite records of chlorophyll and carbon data indicate that this long-held hypothesis is not true. The rate of phytoplankton accumulation actually begins to surge during the middle of winter, the coldest, darkest time of year.

The fundamental flaw of the previous theory, Behrenfeld said, is that it didn't adequately account for seasonal changes in the activity of the zooplankton - very tiny marine animals - in particular their feeding rate on the phytoplankton.

"To understand phytoplankton abundance, we've been paying way too much attention to phytoplankton growth and way too little attention to loss rates, particularly consumption by zooplankton," Behrenfeld said. "When zooplankton are abundant and can find food, they eat phytoplankton almost as fast as it grows."

The new theory that Behrenfeld has developed, called the "dilution-recoupling hypothesis," suggests that the spring bloom depends on processes occurring earlier in the fall and winter. As winter storms become more frequent and intense, the biologically-rich surface layer mixes with cold, almost clear and lifeless water from deeper levels.

This dilutes the concentration of phytoplankton and zooplankton, making it more difficult for the zooplankton to find the phytoplankton and eat them - so more phytoplankton survive and populations begin to increase during the dark, cold days of winter.

In the spring, storms subside and the phytoplankton and zooplankton are no longer regularly diluted. Zooplankton find their prey more easily as the concentration of phytoplankton rises.

So even though the phytoplankton get more light and their growth rate increases, the voracious feeding of the zooplankton keeps them largely in-check, and the overall rise in phytoplankton occurs at roughly the same rate from winter to late spring. Eventually in mid-summer, the phytoplankton run out of nutrients and the now abundant zooplankton easily overtake them, and the bloom ends with a rapid crash.

"What the satellite data appear to be telling us is that the physical mixing of water has as much or more to do with the success of the bloom as does the rate of phytoplankton photosynthesis," Behrenfeld said. "Big blooms appear to require deeper wintertime mixing."

That's a concern, he said, because with further global warming, many ocean regions are expected to become warmer and more stratified. In places where this process is operating - which includes the North Atlantic, western North Pacific, and Southern Ocean around Antarctica - that could lead to lower phytoplankton growth and less overall ocean productivity, less life in the oceans.

These forces also affect carbon balances in the oceans, and an accurate understanding of them is needed for use in global climate models.

Worth noting, Behrenfeld said, is that some of these regions with large seasonal phytoplankton blooms are among the world's most dynamic fisheries.

The critical depth hypothesis would suggest that a warmer climate would increase ocean productivity. Behrenfeld's new hypothesis suggests the opposite.

Behrenfeld said that oceans are very complex, water mixing and currents can be affected by various forces, and more research and observation will be needed to fully understand potential future impacts. However, some oceanographers will need to go back to the drawing board.

"With the satellite record of net population growth rates in the North Atlantic, we can now dismiss the critical depth hypothesis as a valid explanation for bloom initiation," he wrote in the report.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Oregon State University
Water News - Science, Technology and Politics



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


WATER WORLD
Indian Ocean Sea-Level Rise Threatens Coastal Areas
Boulder CO (SPX) Jul 19, 2010
Indian Ocean sea levels are rising unevenly and threatening residents in some densely populated coastal areas and islands, a new study concludes. The study, led by scientists at the University of Colorado at Boulder (CU) and the National Center for Atmospheric Research (NCAR) in Boulder, Colo., finds that the sea-level rise is at least partly a result of climate change. Sea-level ris ... read more







WATER WORLD
Voodoo rite draws Haitian faithful praying for comfort

27 missing after bus plunges off road in southwest China

The Life-Saving Capabilities Of Storm Shelters

World Bank-managed Haiti aid fund only 20 percent full

WATER WORLD
Eurofighter partners say to develop latest generation radar

'Smart' metal could replace refrigerants

Australian laser system to track space junk

Amazon says Kindle sales leapfrog hardback sales

WATER WORLD
Stormwater Model To Inform Regulators On Future Development Projects

Aquatic Dead Zones

Findings Overturn Old Theory Of Phytoplankton Growth

Turkey, Turkish Cypriots sign water pipeline deal

WATER WORLD
Satellite giving scientists 'ice' insights

Himalayan ice shrivels in global warming: exhibit

Footloose Glaciers Crack Up

Arctic Climate May Be More Sensitive To Warming Than Thought

WATER WORLD
Hospitals urge antiobiotic-free meat

Thailand to unleash swarm of wasps on crop pest

AgBank shares to start trading in Hong Kong

China seizes eight tonnes of endangered pangolins

WATER WORLD
Death toll from typhoon rises to 76 in Philippines

Singapore to step up anti-flood measures after deluge

Flash floods stain Singapore's reputation as urban paradise

146 dead in China rainstorms and floods: state media

WATER WORLD
Kenya goes hi-tech to curb election fraud

Northrop Grumman Wins African Training Contract

G. Bissau president warns army top brass, drug traffickers

Religious intolerance threatens Nigerian democracy: Jonathan

WATER WORLD
The Friend Of My Enemy Is My Enemy

The Protective Brain Hypothesis Is Confirmed

Scientists study brain's 'body map'

The Battle For News Supremacy


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement